
Developer Docs

Getting Started
Welcome to the Developer Docs for Virtual Shopping. We've put together this simple guide to help you get
set-up. When you're done, customers will be able to virtually shop with your store team.

The Virtual Shopping On-site chat feature

What you need to know

Virtual Shopping embeds easily on any website with a lightweight JavaScript code snippet. It will only
appear after important website content because it loads asynchronously, and it won't interfere with any
other on-page content, code, or SEO because it's in an iframe. It's also extendible so you can listen to and
interact with it using the Virtual Shopping API for more advanced setups.

Now that we've covered the basics, you're ready to start setting up Virtual Shopping in 5 key steps.

Before you begin

Make sure to consider whether other testing or development work streams are taking place on
your website to avoid delays to launch.

Tests and changes that occur at the same time as the Virtual Shopping implementation risk
overwriting changes and interfering with operations. If there are any other activities taking place
in the same window, please let us know so we can plan around it.

Step 1. Implement Virtual Shopping

Add Virtual Shopping correctly to a website via Javascript, including setting up events tracking and

Add Virtual Shopping correctly to a website via Javascript, including setting up events tracking and
meeting requirements for cookies.

Implement Virtual Shopping

Timings Guide!

Suggested Brand Resource

1 Web Developer (with access to your staging site)

Suggested Brand Timeline

2 days

Step 2. Configure On-Site Chat

Set up On-site chat to provide shoppers with the optimum experience.

Configure Virtual Shopping

Timings Guide!

Suggested Brand Resource

1 Product Feed Administrator

Suggested Brand Timeline

0.5 days

Step 3. Extend Virtual Shopping

Go beyond the core On-site Chat implementation to do more.

Extend Virtual Shopping

Step 4. Test Virtual Shopping

Once you're all set up, make sure Virtual Shopping is working correctly.

Test Virtual Shopping

Timings Guide!

Suggested Brand Resource

1 Web Developer

1 Quality Assurance Engineer

Suggested Brand Timeline

1.5 days

Step 5. Ready Stores

Ensure your store teams are technically set up for Virtual Shopping.

Ready Stores

​

​

​

Implement Virtual Shopping

Overview

Implement Virtual Shopping correctly

In this section, you'll find out how to implement Virtual Shopping correctly on your website. Read this
section to learn:

✅ How to add the Javascript code snippet in all the right places.

✅ How to track Shopper Events using the Virtual Shopping Client API.

✅ The wide range of Shopper Events, why they're good and what they do.

✅ Cookie requirements are met for displaying Virtual Shopping aligning with shoppers' data preferences.

Add the Virtual Shopping tag

Track Shopper Events

Cookie requirements

​

​

Add the Virtual Shopping tag

How do you add Virtual Shopping to your website?

For Virtual Shopping to work on your website, you will need to add a small piece of JavaScript to your
website pages. Adding the code snippet to every page of your website helps ensure:

​ On-site Chat displays correctly in the right places

Experts can continue chats as shoppers navigate to other pages

Every sale supported by Virtual Shopping is tracked from chat to checkout

Note that you can choose to deploy the JavaScript via Google Tag Manager or Tealium.

We recommend you add the JavaScript code snippet to every page of your website. This is so
that chats can follow shoppers from page to page after an initial chat is started and so that sales
are tracked correctly.

You do not have to add the Virtual Shopping tag to sensitive pages in your checkout journey but
the tag does need to be deployed to the transaction confirmation / complete page to track sales.

Later in setup, you can on your website with URL whitelisting and
blacklisting. The best places to show the Virtual Shopping icon are on your website's product and category
pages.

specify where On-site chat will appear

JavaScript code snippets for Staging and Production

Ahead of implementation, we will send you two App IDs for each website region. In each case, one App ID
is for your Staging environment and one for your Production environment.

1. Staging App ID - add this to your Staging website pre-production or any other environment for testing
which is not public and best reflects the live environment.

2. Production App ID - add this to your live production environment. Klarna will need to complete your
production website's configuration and confirm that everything is set up correctly before the JavaScript
is deployed. This step will usually take place at the end of the integration process just before going
live.

 IDs look like this:

Why 2 IDs? The 2 IDs relate to different instances on Virtual Shopping's backend. Having
different instances of Virtual Shopping means you can test on your staging website and leave
your production website clear for live data.

How to add the JavaScript code snippets

On both staging and production websites, copy the corresponding JavaScript code snippet and paste them
just before the closing body tag on every page of your website replacing KLARNA-XXXX with the unique
Application ID:

<script>window.HeroWebPluginSettings = { applicationId: "KLARNA-XXXX" };</script>
<script>(function(i,a,m,h,e,r,o){i.HeroObject=e;i[e]=i[e]||function(){(i[e].q=i[e].q||[]).pu

Although Virtual Shopping is often focused on PDP and category-level pages, you should
deploy the tag to almost your whole site, including the post-purchase / checkout complete page
so that sales influenced by Virtual Shopping can be accurately tracked.

Virtual Shopping does not need to be deployed to the more sensitive pages in your checkout
journey.

Testing the Virtual Shopping tag

Once the Virtual Shopping team has completed setting up your configurations on their side, it's good
practice to test that your Virtual Shopping Tag implementation is set up correctly so you can feel confident
ahead of launch. When you're ready to do this, follow this guide:

Test the Virtual Shopping tag

Track Shopper Events

Set up Virtual Shopping to track shopper behaviour

Virtual Shopping can empower store team members with context on how shoppers are behaving on your
website to support their conversations. For this to work, you will need to set up Virtual Shopping to track
the specific actions shoppers take on your website.

In this section we'll learn about:

​ What the Virtual Shopping API is and how it works.

What Shopper Events are, and the different types.

What eCommerce subfields are and the different types.

What is the Virtual Shopping Client API?

Once you have added the Virtual Shopping JavaScript code snippet to your pages, you will then have
access to the Virtual Shopping API. The Virtual Shopping Client API interacts with and listens to Shopper
Events and sends tracking events to you. Shopper Events can then be easily set up on your page
template.

The Virtual Shopping Client API should only be accessed after the On-site Chat feature has
been added to your website. Learn how to do this .here

The Virtual Shopping Client API exposes a track method which can be used to track actions, page
views, and eCommerce events across your website. Tracked Shopper Events are then processed and
shown to store teams to inform them of the customer's needs and their journey prior to and during the chat.

What are Shopper Events?

Shopper Events provide insights into the behaviour of every shopper browsing your website. There are
several types of Shopper Events you can track to provide associates with information:

Product View

Purchase

Basket Add

Basket Remove

Category View

Search

Make sure 'Products view' and 'Purchased' Shopper Event tracking is set up at launch.
Virtual Shopping will not work properly without these events in place. Tracking for other
Shopper Events can always be set up later on.

eCommerce Subfields

Each Shopper Event needs to include eCommerce subfields so that Virtual Shopping can track all the key
information to show in each event. Review the full list of required subfields here:

eCommerce Subfields

Testing Shopper Events

Once the Klarna team has completed setting up your configurations on their side, it's good practice to test
that your Shopper Event tracking is set up correctly so you can feel confident ahead of launch. Find out
how to do this here:

Test Shopper Event tracking

​

Product View
Shopper Event

​

The Product View Shopper Event gives store experts who are about to chat to shoppers, context on which
products they have been viewing.

The Product View Shopper Event should be set up to fire on all PDP pages.

Product View Shopper Event tracking must be set up at launch because it is fundamental
to using Virtual Shopping.

Product View fields:

Name Value Type Required Description

type
ecommerce:de
tail

text yes
The type of
tracking

products
See

​

eCommerce
products
subfields

array yes
The product
details

Key things to check

The Product ID is a required field and must reflect what was sent to the Store app in the product
feed.

The Product ID reflects the individual product - not the group ID.

The price is written as a number not a String.

The entire product array cannot be enclosed within a String.

Product View example:

hero("track", {
 type: "ecommerce:detail",
 products: [
 {

 id: "314-7216-102",
 name: "Tennis Shoe Classic - Size 10",
 image: "https://example.com/images/314-7216-102.jpg",
 price: 70.99,
 currency: "USD",
 brand: "Plausible Co.",
 category: "Footwear > Sports > Tennis",
 location: "https://example.com/products/314-7216"
 }
]
});

Purchase
Shopper Event

​

The Purchase Shopper Event gives store experts who are about to chat to shoppers, context on which
products they have recently purchased.

The Purchase Shopper Event should be set up to fire on all purchase complete/ thank you pages

Purchase Shopper Event tracking must be set up at launch because it is fundamental to
using Virtual Shopping.

Purchase fields:

Name Value Type Required Description

type
ecommerce:pu
rchase

text yes
The type of
tracking

purchase
See

eCommerce
purchase
subfields

object yes
The purchase
details

products
See

​

eCommerce
products
subfields

array yes
The product
details

Key things to check

Purchase event IDs are correct

Every purchase event has a unique ID that can be used to record the transaction.

The product ID products: [reflects what was sent to Klarna in the product feed.

Product ID reflects the individual product - not the group ID.

Subtotal, total, tax, shipping cost, quantity & price is written as a number - not a String.

Shipping costs are excluded

Any shipping costs are excluded from the subtotal sent to Klarna as this is the figure that
any associate commission will be based on.

In the example below, the total field is 74.98 which is the total price the shopper has been

charged including tax and shipping costs. The subtotal of 70.99, which excludes the

shipping cost of 3.99 but includes tax, is the total that will be recorded against that
associate for the sale.

Tax preference is decided

It is up to you whether or not to include tax within the subtotal sent to Klarna. Please note
associate commission will be based on the sub-total value.

Purchase example:

hero("track", {
 type: "ecommerce:purchase",
 purchase: {
 id: "abcd",
 subtotal: 70.99,
 currency: "USD",
 total: 74.98,
 tax: 14.20,
 shippingCost: 3.99,
 shippingMethod: "Store pickup",
 coupon: "SUMMER_SALE"
 },
 products: [
 {
 id: "314-7216-102",
 name: "Tennis Shoe Classic - Size 10",
 image: "https://example.com/images/314-7216-102.jpg",
 price: 70.99,
 currency: "USD",
 quantity: 1,
 brand: "Plausible Co.",
 category: "Footwear > Sports > Tennis",
 location: "https://example.com/products/314-7216"
 }
]
});

Basket Add
Shopper Event

​

The Basket add Shopper Event gives store experts who are about to chat to shoppers context on which
products are in the shopper's basket.

Basket add Shopper Event tracking is not recommended for the initial launch. This
shopper event is a 'nice to have' addition and can be set up after launch.

'Product View' and 'Purchase' Shopper Event tracking must be set up at launch because these
events are fundamental to using Virtual Shopping.

Basket add fields:

Name Value Type Required Description

type
ecommerce:a
dd

text yes
The type of
tracking

products
See

​

eCommerce
products
subfields

array yes
The product
details

Key things to check

Product IDs are correct

There is a Product ID for every entry.

The Product ID reflects what was sent to Klarna in the product feed.

The Product ID reflects the individual product - not the group ID.

The quantity, basket quantity, and price are written as a number, not a String.

Please note: the entire product array cannot be enclosed within a String.

Basket add example:

hero("track", {

 type: "ecommerce:add",
 products: [
 {
 id: "314-7216-102",
 quantity: 1,
 basketQuantity: 1,
 name: "Tennis Shoe Classic - Size 10",
 image: "https://example.com/images/314-7216-102.jpg",
 price: 70.99,
 currency: "USD",
 brand: "Plausible Co.",
 category: "Footwear > Sports > Tennis",
 location: "https://example.com/products/314-7216"
 }
]
});

Basket Remove
Shopper Event

​

The basket remove Shopper Event gives store experts who are about to chat to shoppers, context on
which products have been removed from a shopper's basket.

Basket remove Shopper Event tracking is not recommended for initial launch. This
shopper event is a 'nice to have' addition and can be set up after launch.

'Product View' and 'Purchase' Shopper Event tracking must be set up at launch because these
events are fundamental to using Virtual Shopping.

Basket remove fields:

Name Value Type Required Description

type
ecommerce:re
move

text yes
The type of
tracking

products
See

​

eCommerce
products
subfields

array yes
The product
details

Key things to check

Product IDs are correct

Product IDs are required fields and reflect that which was sent to Klarna in the product feed.

The Product ID reflects the individual product - not the group ID.

The quantity, basket quantity, and price are written as a number - not a String.

Please note: the entire product array cannot be enclosed within a String.

Basket remove example:

hero("track", {
 type: "ecommerce:remove",
 products: [

 {
 id: "314-7216-102",
 quantity: 1,
 basketQuantity: 0,
 name: "Tennis Shoe Classic - Size 10",
 image: "https://example.com/images/314-7216-102.jpg",
 price: 70.99,
 currency: "USD",
 brand: "Plausible Co.",
 category: "Footwear > Sports > Tennis",
 location: "https://example.com/products/314-7216"
 }
]
});

Category View
Shopper Event

​

The Category view Shopper Event gives store experts who are about to chat to shoppers, context on
which product categories they have been viewing on your website.

Category view Shopper Event tracking is not recommended for initial launch. This
shopper event is a 'nice to have' addition and can be set up after launch.

'Product View' and 'Purchase' Shopper Event tracking must be set up at launch because these
events are fundamental to using Virtual Shopping.

Category view fields:

Name Value Type Required Description

type event text yes
The type of
tracking

action
category-
view

text yes
The type of
interaction

value - text yes
The name of th
category

location - text yes
URL of the pa
being tracked

Category view event example:

hero("track", {
 type: "event",
 action: "category-view",
 value: "Accessories",
 location: "https://example.com/categories/accessories"
});

Search
Shopper Event

​

The Search Shopper Event gives store experts who are about to chat with shoppers, context on which
products shoppers have recently searched for on your website.

Search Shopper Event tracking is not recommended for the initial launch. This shopper
event is a 'nice to have' addition and can be set up after launch.

'Product View' and 'Purchase' Shopper Event tracking must be set up at launch because these
events are fundamental to using Virtual Shopping.

Search event fields:

Name Value Type Required Description

type event text yes
The type of
tracking

action search text yes
The type of
interaction

value - text yes
The value bein
searched

location - text yes
URL of the pa
being tracked

Search event example:

hero("track", {
 type: "event",
 action: "search",
 value: "bedding sets",
 location: "https://example.com"
});

eCommerce Subfields

eCommerce subfields are the mandatory items you will need to provide Virtual Shopping with to ensure
Shopper Events track all the key information.

Please note if all recommended fields have not been included during set up, Virtual Shopping
will fall back on the data provided in your Product Feed.

Here is a full breakdown of required and non-required fields:

Purchase array item subfields

Name Type Required Description

id text yes The purchase/order

subtotal number yes
The total price for al
products in a purcha

currency text yes
The purchase curre
(ISO 4217)

total number no

The overall adjusted
total calculated price
for all of the product
a purchase

tax number no The purchase tax

shippingCost number no
The purchase shipp
cost

shippingMethod text no
The purchase shipp
method

coupon text no The purchase coupo

Product array item subfields

Name Type Required Description

id text yes

The unique product
or SKU (must exactl
match one product i
the)Product Feed

quantity number yes* The product quantity

basketQuantity number yes**
The new basket
quantity for this prod

name text recommended The product name

image text recommended
The product image
URL

price number recommended The product price

currency text recommended
The product currenc
(ISO 4217)

location text recommended The product URL

brand text no The product brand

category text no

Must match the
category hierarchy f
this product as defin
in the

E.g. Menswear >
Shoes > Brogue

Product Feed

* Required for , and Shopper EventsPurchase Basket Add Basket Remove

** Required for and Shopper EventsBasket Add Basket Remove

Cookie requirements

Depending on which cookies shoppers accept on your website, it is necessary to ensure that
On-site Chat is only shown to shoppers who accept the required cookies for Virtual Shopping.

How Virtual Shopping uses cookies

To provide a tailored experience, Klarna uses cookies and similar tracking technologies.
​

Find more details
on these and how they work here.

You can view full details on which cookies Klarna Virtual Shopping uses ​in our privacy policy.

Example of a cookie banner. Virtual Shopping should only be displayed if a shopper accepts the necessary cookies.

Display requirements

When a shopper browses your site, On-site Chat must only be displayed if a shopper accepts the
necessary cookies.

If the shopper declines the use of cookies, the code for Virtual Shopping should not be initialized.

Most of our partner merchants categorize Virtual Shopping cookies as functional cookies.
However, you can decide for your site whether Virtual Shopping cookies are strictly necessary
or functional.

Additionally, as is standard in cookie banners, shoppers should have the option to allow or deny cookie
permissions from your cookie banner (or dedicated "manage cookie permissions" pop-up), whether asking
for implied or explicit cookie consent.

Take a look at the following example of how this could be done:

https://privacy-dc.virtual-shopping.klarna.com/privacy-notice/

Your website may categorize cookies in different ways, and accordingly, the cookies required for Klarna Virtual Shopping may be included
in a category such as "Functionality cookies". It must be possible to enable or disable these.

​

Accessibility requirements

Your cookie notice should meet AA requirements for accessibility guidelines.

As part of the launch process, we’ll test your cookie notice against these guidelines and share advice on
any improvements to make to better comply with accessibility standards.

​

Privacy policy requirements

It is also a requirement to link to .Klarna Virtual Shopping's Consumer Privacy Notice

You can include this link in the following places:

Directly in your cookie banner.

Within your cookies permissions pop-up.

On a dedicated cookies policy page.

Within a dedicated privacy and cookies centre (which is accessible from your cookie banner).

https://privacy-dc.virtual-shopping.klarna.com/privacy-notice/

Configure Virtual Shopping

Overview

Configure Virtual Shopping for the best shopper experience

In this section, you'll find out how to configure Virtual Shopping to give shoppers the optimum experience.
Read on to set up:

​ Product recommendations for shoppers by integrating your Product Feed

On-site chat showing at the right moments with Whitelisting / Blacklisting and Follow Rules

Integrate Product Feed

Set where Virtual Shopping appears

​

​

​

Integrate Product Feed

Setting up Virtual Shopping for product recommendations

With the Store App, experts can recommend products to website visitors during a chat to drive sales.
These product recommendations are sent as Product Cards, which a store team member can send to a
shopper during a chat.

How to integrate your Product Feed with the Store app

For this to work, the Store App needs access to a Product Feed in CSV or XML format.

To share your Product Feed with Virtual Shopping, you can share a publicly accessible URL or an SFTP
for Virtual Shopping to fetch it from - or we can provide an SFTP for you to put it in.

Please ensure each product entry contains:

Product SKU Code

Product Title

Product Image(s) URL

Product URL

Price

Description

Currency

Category

Stock Quantity

We also recommend you include other fields that contain terms your associates may use to
describe or search for a product such as:

Sale Price

Size Variant

Color Variant

Additional image URLs

Style Code or Master SKU (i.e. to group SKUs)

Brand Name

Barcode Number

Virtual Shopping indexes the Product Feed at least once per day so that the products available for
associates to share in chats with shoppers are representative of the latest online product catalogue. Virtual
Shopping can refresh the product feed more frequently if necessary.

Stock Changes

We recommend ensuring all products remain in a product feed, whether they are in stock or out of stock.

Simply declare the stock quantity as 0 when out of stock, and we'll do the rest.

This ensures Virtual Shopping still has access to all products in your inventory, and experts can
recommend these products.

Creating Your Product Feed

To ensure a seamless handover and quick setup, we recommend sending Virtual Shopping your Product
Feed in an easy-to-handle format.

Please note to remain compliant with our cloud communications platform, no prohibited product
(such as CBD) can be included within your product feed. For further information please visit our
partner's . Terms of Service

Below we've assembled an example table of property names that you can use when setting up your
Product Feed to send to Virtual Shopping. If using these names is not possible, the Virtual Shopping team
can map your feed as part of the launch process.

For an example Product Feed containing example property fields, download the below attached
example.

VS-Example-Product-feed-v1.0.csv 7KB

Text

Please scroll to the right in this table to see example values.

https://www.twilio.com/legal/aup

Property Type Required Description Example Value

sku_code string yes
The unique
identifier for a
specific product.

314-7216-102

group_sku string no

The identifier for a
group of products:
each variation i.e.

size / colour

or fabric will
have a unique
identifier

it's sku_code.
​

The group_sku
is used to ensure
product variations
appear under the
same product in the
app.

314-7216

title string yes A product’s title. Relaxed Fit T-sh

description string yes

Description of the
product with all
markdown or HTML
removed.

Our classic 100%
cotton relaxed fit
shirt

currency string yes

The ISO-4217
currency code for
this product. This
will generally be the
same for all
products in a feed.

GBP

normal_price number yes
How much the
product usually
costs.

99.99

sale_price number no
If the product is on
sale, how much it
costs while on sale.

79.99

stock_quantit
y

number yes

How many units of
this product are
currently in stock.
You can supply a

1 / 0 for in and out
of stock,
respectively.

34

url URL yes
A link to the
product’s product
detail page.

​

​

https://example.c
/products/01234A
DefGH

categories string yes

The category
breadcrumb trail for
this product, as a
delimited string.

Ladies fashion >
Jeans & Trouser
Skinny jeans

image_url URL yes
A link to the main
image for this
product.

​

​

https://example.c
/products/01234A
DefGH/images/0
1.jpg

alternate_ima
ge

URL no

One or more links to
images for this
product.
​
CSV
If you have multiple
additional images
use columns with
an incremented
number e.g.

alternate_ima
ge_1

alternate_ima
ge_2

​
XML
Wrap each URL in
the same tag e.g.

<alternate_im
age>URL_1</alt
ernate_image>

<alternate_im
age>URL_N</alt
ernate_image>

​

​

https://example.c
/products/01234A
DefGH/images/0
2.jpg

gender string no

If you have gender
specific products,
you can supply a
value for gender.

unisex

size string no
Include for products
that have size
variations.

XX-Small

Include for products

https://example.com/products/01234AbcDefGH
https://example.com/products/01234AbcDefGH/images/0001.jpg
https://example.com/products/01234AbcDefGH/images/0002.jpg

color string no that have colour
variations.

Navy

fit string no
Include for products
that have fit
variations.

Relaxed

fabric string no
Include for products
that have fabric
information.

98% Cotton, 2%
Elastane

barcode string no
Include if you need
to show barcode
information.

0100234567890

collar string no
Include for products
that have collar
variations.

Point

feature string no
Include for products
that have feature
information.

Hidden Pocket

Representing discounted/sale prices

If a product is currently on sale, we can display it in the Store App for Product Experts (not to shoppers)

with "strikethrough" pricing. If you provide a sales_price value for a product, we will display the

normal_price crossed-out, and the sale_price in its place.

For example:

"normal_price": 449.00,
"sale_price": 369.00,
"currency": "GBP",

A product showing in the Store App for Products with "strikethrough" sale pricing

Product Feed error reports

We provide you with error reporting for your product feeds. This will help you ensure product feeds are
regularly updated without any disruption.

Get notified of any issues with your Product Feed. 🚨

Virtual Shopping indexes the Product Feed at least once a day to ensure your product experts have
access to your latest online offering. If there are any issues, which means indexing fails, your designated
contacts will be notied by email.

​

Proactively resolve product feed issues. ⚙️

The email will contain a CSV file containing clear details of what the errors are to make it quick and simple
for you to resolve these. In this section, you'll find details about what each error means, and how you'll be
able to resolve them.

​

Happy Product Feed, high performing product experts. ✨

Being able to quickly resolve any issues helps keep your product feed up-to-date. That in turn helps you
ensure your product experts have access to the latest information on pricing, availability and assortment to
continue making recommendations and driving sales.

​

How it works

✅ Select one or multiple assigned contacts to receive Product Feed Error Reports.

✅ When your Product Feed is indexed, if any errors are encountered, these contacts will receive an email.

✅ This email will contain a CSV error report, detailing exactly what the errors are. This will contain links to
the relevant documentation (listed in this section) to help you quickly resolve the error:

General validation errors

Field-specific errors

✅ Your team will be able to resolve the error(s). Following this, no further reports will be sent and the
Product Feed will be indexed.

​

FAQs

Where can I find more information about Product Feeds and the possible errors?

Check out the page "Integrate Product Feed" to the left to learn more about how the Product
Feed works.

 If you’re sent an error report, we’ll include the following links to documentation covering different
error types and how to resolve them: General Validation Errors and Field-specific Errors. You can
also find this documentation in this section.

Are Product Feed Error Reports mandatory for all Virtual Shopping Merchants?

These reports are intended to help merchants quickly resolve issues with Product Feeds and
avoid resulting problems for product experts. If you would not like to receive reports, please let us
know.

Who will receive the error reports?

We’ll ask you to provide details for a contact person or persons who will be notified of errors via
email during the set-up process. These may be technical team members who are best placed to
quickly resolve any issues.

General validation errors
Common issues encountered when processing product feeds

​ ​Missing/empty mandatory field

​ ​Invalid URL found

​ ​Invalid Number found

​ ​Unable to process feed

Missing/empty mandatory field

This field is mandatory, thus its value cannot be empty

The field in question is designated as mandatory but no value has been found for the given product.

Possible resolutions

1. Amend the product feed to provide the missing data.

2. Amend the product feed to omit products that do not meet the mandatory data requirements.

3. Amend the field definition in Klarna VS to make it optional (this comes with the tradeoff that missing
data will no longer be caught for all products).

Invalid URL found

The following value is not a proper URL: www.klarna.com

Any field designated as a URL, and which contains data, must contain a valid URL according to the

. The most common cause of this error is a missing https:// prefix.

URL

Standard

Possible resolutions

1. Amend the product feed to correct the invalid URLs

2. Amend the product feed to omit products for which no valid URLs are available

https://url.spec.whatwg.org/

Invalid Number found

The following value is not a proper number: Large

Fields which must be numbers (for example, pricing fields) must contain valid numbers. A common cause
of this error is when a number is sent with separators instead of as a plain number. For instance:

Incorrect: 20.300,99

Correct: 20300.99

Possible resolutions

1. Amend the product feed to correct the formatting of numbers.

2. Amend the product feed to omit products for which there is no valid numerical data

Unable to process feed

In order to index your product feed Klarna VS must be able to access the feed file, and the file must be
complete and in a valid format. Common errors in this category include:

A feed file has moved or been renamed (the product feed URL returns a 404 "Not Found" error)

Authentication requirements for the feed URL have changed (e.g. a password has changed, or a
password is now required where one was not previously required)

A feed file is incomplete or otherwise corrupted (e.g. a truncated XML feed file which is no longer
parseable as valid XML)

Possible resolutions

1. If the feed file has been moved or renamed, update your product feed URL under Account Settings in
Dashboard (or provide your Klarna VS account manager with the updated details)

2. If authentication credentials have changed, provide the updated credentials to your Klarna VS
account manager

You can identify traffic from the Klarna VS product feed indexer by its source IP addresses, which
are 54.228.73.53, 54.78.118.192 and 99.81.185.60

3. If the feed file is incomplete or corrupted then you will need to check the status of the system that
generates the feeds; this isn't something that Klarna VS can directly assist with

4. If you are unable to publicly host your product feed file we provide you an account on the Klarna VS
SFTP server where you can upload your feed files securely; if this is something you require, speak to
your Klarna VS account manager

Field-specific errors

​ ​SKU code

​ ​Image URLs

​ ​Categories

​ ​Description

SKU code

Missing SKUs

A product without ID has been found. Please revise the product feed and make sure all IDs are in place

All products in the feed must have a unique ID; this error occurs when the field marked as the unique ID is
empty.

Possible resolutions

1. Amend the product feed to provide the missing data

2. Amend the product feed to omit products which have no unique ID

Duplicate SKUs

Klarna VS requires that products have unique identifiers. We use these unique identifiers when
, where we require that purchase events specify a unique ID that matches one

we have in your product feed.

tracking
shopper purchase events

If a feed contains multiple products with the same unique ID (SKU) then it will fail validation because
duplicate SKUs may have different prices or other differing data that will make our reporting inaccurate.

Possible resolutions

1. Amend the product feed to remove duplicates

2. Amend the field definition in Klarna VS to reference a different field in the product feed file (one which
does contain unique IDs without duplicates)

Image URLs

Missing product image URLs

Klarna VS considers the product image field/s to be mandatory, so missing data is treated as a failure.

Possible resolutions

1. Amend the product feed to include the missing product images

2. Amend the product feed to omit products which do not have product images (perhaps these are test
products which are not appropriate to share with shoppers)

3. Amend the product feed to include a generic placeholder image for the products that do not have
actual imagery

Invalid product image URLs

In order for the product image URLs in the feed to be used by Klarna VS they must be valid URLs. See our
" " documentation for examples of common issues with the validation of URLs.Invalid URL found

​

Categories

Empty category data

All products in the feed must have a category hierarchy; this is used to generate the structure of the
Products feature in the Virtual Shopping Store App.

Possible resolutions

1. Amend the product feed to include the missing category data

2. Amend the product feed to omit products for which no valid category data is available

3. Amend the field definition in Klarna VS to include a default category such as "Uncategorised" (this
comes with the tradeoff that missing data will no longer be caught during validation)

This is how Experts would see the Uncategorised category when browsing Products (it appears as a
normal top-level category in the existing hierarchy):

​ ​

​ ​

Description

Empty description data

A common cause of validation failures with descriptions is missing/empty description data. By default
Klarna VS considers the production description field to be mandatory, so missing data is treated as a
failure.

Possible resolutions

1. Amend the product feed to include the missing description data

2. Amend the product feed to omit products that do not have descriptions (perhaps these are not public
products, or are otherwise not suitable for recommending to shoppers)

3. Amend the field definition in Klarna VS to make it optional (this comes with the tradeoff that missing
data will no longer be caught for all products)

Malformed description data

Product descriptions are often longer and contain a wider range of characters, than other text fields.
Common problems that we see include:

1. Descriptions in a CSV product feed that contain " quotation characters or \n newlines that are not
properly escaped and/or quoted

2. Incorrectly-encoded Unicode characters (for example, “” quotation characters or 🙂 emoji)

Possible resolutions

1. Amend the product feed to correctly format the description field (if using CSV format, we strongly
recommend using an compliant CSV library rather than manually quoting/escaping values)RFC 4180

2. Amend the product feed to use the UTF-8 text encoding to avoid issues with Unicode characters

​

​

https://datatracker.ietf.org/doc/html/rfc4180

Set where Virtual Shopping appears

What is "Manage Display"?

Manage Display is a feature that enables you and your team to easily configure where and when Virtual
Shopping On-Site Chat appears on your website. You can also see at-a-glance where Virtual Shopping is
currently appearing in your website.

Manage display is the updated version of our service previously referred to as “URL Blacklisting
& Whitelisting ''. As of July 2022, we’ve updated the name of the service, and made it easier
than ever for you and your team to use.

Within the Manage Display feature, you and your team have the option to use our “simple mode”, for team
members of any technical ability to configure how Virtual Shopping appears, or “advanced mode”, for
technical teams that want to apply more complex rules for how Virtual Shopping displays.

Advanced mode and simple mode for your display settings cannot be used together. Using
simple mode will override your advanced mode settings, and vice versa.

Getting started configuring your display settings

During your launch you will be provided with a Google Sheet for you to add your preferred rules.

When first implementing On-site Chat, the Javascript code snippet must be added to every page
of your website including the checkout confirmation page, apart from sensitive checkout pages
which are optional. This is important so that chats can follow shoppers from page to page and
sales are tracked correctly.

While Virtual Shopping can apply rules to 90,000 URLs via Advanced Mode, we do not recommend
supplying long lists of URLs because this can impact how quickly the chat loads.

Please note without either any display rules in place, the On-site Chat icon will display everywhere
on the website where the tag is deployed.

When will I need to use this feature?

You will need to use this feature any time you want to adjust on which pages the On-site Chat displays.
This could be during the launch of a new product, when running tests on your home page, and more.

Using Simple Mode

Simple mode is our most user-friendly option for managing your display settings, complete with clear
guidance and automatic corrections for duplicate URLs. In the majority of cases, we would recommend
that new merchants use this mode.

By default, the On-site Chat plugin will appear on every page of your site. You can choose to hide
the chat on certain pages of your site with display rules.

About display rules

Managing how and where On-site Chat is displayed has two components:

The URL: The URL defines the section of your site where Virtual Shopping shouldn't appear.

The display rule: This rule defines optional exceptions to the rule.

In the simple mode, you are offered two different display rules that can be applied to your preferred URLs:
“Only ongoing chats displayed” or “No chats displayed”.

Here you can determine whether you want a page to display the On-site Chat if the customer is still in the
middle of an ongoing conversation, or if you would rather the page didn’t display On-site Chat altogether.
In order to apply one of these rules to the URL in question, you can add the URL to the appropriate text
areas.

For example: We suggest hiding the On-site Chat on your checkout pages, your support/FAQ pages, or
your careers page. The URLs for these pages should be added to the “No chats displayed” section.

In order to ensure that your pages can have the rules properly applied, please take the following
steps:

1. Ensure that you are adding the full link (including “http://” or “https://“)

2. Ensure that you are adding the full URL for each page not applying any regex rules. In order to apply
regex, please switch to Advanced Mode.

Using Advanced Mode

By default, On-site Chat will appear on every page of your site. You can choose to hide the plugin on
certain pages of your site with "denied" rules. Each "denied" entry consists of two parts: a partial URL and
a display rule. The partial URL defines the section of your site where Virtual Shopping shouldn't appear,
and the display rule defines optional exceptions to the rule.

Using the advanced mode affords you the same rules that existed in “Simple Mode” that you can apply to
any of the pages that you wish to add to your Allowed/Denied list. In order to use advanced mode, please
download the template CSV, and fill in your urls with your preferred rule. Then simply upload the .csv file
and hit save in order to ensure your changes are applied!

Rule 1: “False”

The false follow rule means that shoppers will never see the On-site Chat on any page matching that
partial URL. The chat cannot follow them onto those pages, even if they have an active conversation
started elsewhere on the site. This is the rule that is applied in the “No chats displayed” section on Simple
Mode.

Rule 2: “In Progress”

The in-progress follow rule means that shoppers can only see the On-site Chat if they are in the midst of a
chat with an Expert. Any pages matching that partial URL will hide the chat for users who are not currently
engaged in a chat. This is the rule that is applied in the “Only ongoing chats displayed” section on Simple
Mode.

In order to apply these rules, you can download the .csv template from the Advanced mode page, add your
partial URLs, and add display rules. Once the .csv is updated, simply re-upload your new display rules to
the Manage Display tool.

For more information on regular expressions, please visit our page on advanced mode: https://docs.virtual-
shopping.klarna.com/configure-hero/blacklisting-whitelisting/advanced-blacklisting-and-whitelisting-
configuration

To ensure that your pages can have the rules properly applied, please take the following steps:

1. Ensure that you are adding the full link (including “http://” or “https://“)

2. Ensure that you are uploading a .csv file, and not a .xlsx file

​

Advanced Mode Examples

Most Virtual Shopping integrations don't require advanced mode. Below we have provided
some advanced examples and link to further detailed technical documentation on regular
expressions.

To reiterate In most cases these are not required. If you have any concerns or require specific
assistance please contact .help.virtualshopping@klarna.com

Introduction to regular expressions

If your website has a large number of unique URLs we recommend using

RegExps to match multiple URLs using a single row / rule. That said, we also

recommend using RegExps sparingly to balance the number of rows and the complexity of

the RegExp to avoid running into performance issues with either.

regular

expressions

A regular expression, or regex for short, is a pattern describing a certain amount of text.

The URLs that we've been using in blacklisting rule examples so far are an example of regular

expressions. For instance, the special $ character which matches the end of the URL.

Regular expressions are a complex topic and can be a powerful tool, for a comprehensive breakdown we
would refer you to the following resources:

1. ​ ​Technical introduction to Regular Expressions

2. ​ ​Mozilla Javascript Guide section on Regular Expressions

3. ​ ​Regex101, an interactive tool for building & testing Regular Expressions

Scheduling activation and expiry of rules

Virtual Shopping supports scheduling the activation date & time of a rule as well as their
deactivation/expiry.

mailto:help.virtualshopping@klarna.com
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://www.regular-expressions.info/quickstart.html
https://www.regular-expressions.info/quickstart.html
https://regex101.com/

URL
Listing
Type

Follow
Rule

Timezon
e

Schedul
ed Date

Schedul
ed Time

Expires
Date

Expire
Time

www.exa
mple.co
m/july-
sale-
2021

allow false
Europe/
Paris

2021-08-
01

00:00 ​ ​

www.exa
mple.co
m/2022-
collectio
n

deny false

Europe/

Paris ​ ​

2022-01-

01 09:00

In the above examples, we have a deny rule for our example July Sale page which activates at midnight
on the 1st of August, stopping Virtual Shopping from appearing any further.

Additionally, we have a rule for our upcoming new year's collection which is currently blacklisted and the
rule is set to expire on January 1st, from then on we would like the Virtual Shopping On-site Chat plugin
will start appearing on the collection page.

Scheduling rules for an operational launch

If needed, Virtual Shopping supports scheduling your blacklisting rules for your initial operational launch.
For example, the Virtual Shopping JavaScript can be added to your production site ahead of the
operational launch, and set with a blacklisting rule that prevents Virtual Shopping from appearing on any
page. This rule can then be set to expire at your designated go-live time.

URL
Listing
Type

Follow
Rule

Timezon
e

Schedul
ed Date

Schedul
ed Time

Expires
Date

Expire
Time

.* blacklist false
Europe/
Paris

​ ​
2021-10-
18

09:00

www.exa
mple.co
m$

blacklist
inprogre
ss

Europe/
Paris

2021-10-
18

09:00 ​ ​

www.exa
mple.co
m/check
out

blacklist false
Europe/
Paris

2021-10-
18

09:00 ​ ​

www.exa
mple.co
m/order-
confirmat
ion

blacklist
inprogre
ss

Europe/
Paris

2021-10-
18

09:00 ​ ​

In the above example we use the pattern .* to blacklist all possible URLs with a rule set to expire at 9am
on the 18th of October (our operational go-live date). Our desired blacklisting rules are then scheduled to
activate at the same time. This will prevent the On-site Chat plugin from appearing at all on our site before
the allotted launch time.

Whitelisting

Although it is not commonly needed, On-site Chat does support whitelisting as an alternative to
blacklisting.

With blacklisting, if a URL pattern is blacklisted then all other URLs are implicitly "whitelisted" (i.e. On-site
Chat will appear). The opposite is true for whitelisting: if a URL pattern is whitelisted then all other
URLs are implicitly blacklisted (note though by default they will be blacklisted with the follow rule of

inprogress , meaning On-site Chat will appear if the shopper is in an active chat).

The most common use for this is to whitelist a single URL (typically a low-traffic page) to perform initial pre-
launch testing in production. For further information on testing your Virtual Shopping integration, please
see .our testing documentation

For instance, we can whitelist our terms & conditions legal page so that the On-site Chat plugin appears
but will be hidden on all other pages:

URL Follow Rule Type

www.example.com/legal/terms$ inprogress whitelist

Whitelisting can also be useful if you want On-site Chat to appear on a minority of your website's pages
where using a few whitelisting rules results in a smaller/simpler overall configuration (i.e. provide few
whitelisting rules instead of many blacklisting rules).

Let's imagine we only want On-site Chat to appear in two product categories, and have many other
categories and non-product site sections where we do not want On-site Chat to appear.

URL Follow Rule Type

www.example.com/products/out
door-furniture

inprogress whitelist

www.example.com/products/kitc
hen

inprogress whitelist

www.example.com/checkout false blacklist

www.example.com/support false blacklist

www.example.com/careers false blacklist

In the above example all product pages under the products/outdoor-furniture and

products/kitchen categories will be whitelisted (On-site Chat will appear) and all other pages on the

site will be blacklisted with the inprogress follow rule (On-site Chat won't appear unless the shopper
is currently in an active chat).

https://docs.usehero.com/test-hero/overview

We also set specific blacklist rules with the false follow rule to prevent On-site Chat from ever
appearing on a few specific pages such as our checkout path and all support pages. We don't need to
provide blacklist rules for all of our other product categories or non-product sections of the site.

Advanced examples

Language or region-specific URLs

There are many different ways that languages and geographic regions are represented in website URL
paths, here we will look at some of the most common.

Showing Virtual Shopping on only one language version of a site

The first component of our URL path is a language identifier such as "fr" or "de", and we only wish to allow
Virtual Shopping on the French pages of our site.

URL Pattern Follow Rule Type

www.example.com/(?!fr|FR) false blacklist

The example above uses a negative lookahead regular expression to match any URL that does not have

fr as its first component. .See this example in Regex101

Showing Virtual Shopping on all language versions of a site

Our site may have many localisations and we need to write blacklist rules that apply to all of them,
targeting a section of our site while ignoring the language/region identifier.

In this example, we have multiple languages available on our site at URLs like example.com/en ,

example.com/fr , example.com/ro etc.

URL Pattern Follow Rule Type

www.example.com\/[a-zA-Z]
{2}\/support

false blacklist

www.example.com\/[a-zA-Z]
{2}\/checkout

false blacklist

In the above example, the On-site Chat plugin will never appear on the support or checkout pages of any
language. .See this example in Regex101

Alternatively, our site may have combined both regional and language identifiers with URLs such as

example.com/ch/ch-FR , example.com/ch/ch-DE or example.com/ca/en

https://regex101.com/r/4sjsgt/1
https://regex101.com/r/AnLu8a/1

URL Pattern Follow Rule Type

example.com\/[a-zA-Z]{2}\/[a-zA-
Z]{2}(-[a-zA-Z]{2})?
\/products\/lighting

false blacklist

In the above example we have blacklisted the products/lighting category for all regions &
languages with a single rule. .See this example in Regex101

Allowing optional characters at the end of URLs

Many sites have pages that can also be accessed with a trailing / character on the end of the URL. E.g.

accessing the homepage with either example.com or example.com/ . If a site behaves like this and
we wish to blacklist Virtual Shopping on our homepage, then we will need the following rule:

URL Pattern Follow Rule Type

www.example.com\/?$ inprogress blacklist

The above rule will blacklist Virtual Shopping on the homepage, ignoring the trailing / character if it's
present. .See this example in Regex101

Allowing for sites to be accessible with and without the www subdomain

Some sites are served from both the www subdomain and the main domain itself. For instance,

www.example.com/support and example.com/support may both be valid URLs serving the

same content. In this case, we can omit the www from the pattern and the pattern will still match both
versions of the URL:

URL Pattern Follow Rule Type

example.com\/support false blacklist

​ .See this example in Regex101

https://regex101.com/r/jnc7dW/1
https://regex101.com/r/97obft/1
https://regex101.com/r/XYgW9P/1

Extend Virtual Shopping

Overview

Extend Virtual Shopping beyond your core implementation

Virtual Shopping On-site Chat is extendible - which means you can listen to and interact with it using the
Virtual Shopping Client API. Once you have finished your core set up, it is possible to go beyond your core
implementation and set up advanced events to:

​ Get deeper insights into how shoppers are interacting with On-site Chat

Control how On-site Chat behaves such as for routing chats

Customise how On-site Chat displays on your website

​

Interaction Event Listeners

Interaction Event Methods

Update customer details

Department Filtering

Customise On-site Chat

Adjust On-site Chat position

Creating a custom chat menu

​

Interaction Event Listeners

An Interaction Event is an event that allows you to understand what Virtual Shopping is doing, so that you
can react accordingly. You can write listeners to create custom journeys based on what Virtual Shopping is
doing.

Virtual Shopping is Ready

Virtual Shopping is visible to the shopper:

hero("onReady", function(event) {});

Virtual Shopping is in Use

The shopper has a conversation in-progress:

hero("onReady", function(event) {
 if (event.messengerInUse) {}
});

Virtual Shopping is Not Visible

Virtual Shopping is not visible to the shopper:

hero("onShutdown", function() {});

Virtual Shopping is Shown

The Virtual Shopping On-site Chat view has been shown:

hero("onShow", function() {});

Virtual Shopping has been Hidden

The Virtual Shopping On-site Chat view has been hidden:

hero("onHide", function() {});

Example:

const scrollToTopButton = document.querySelector("button.scroll-to-top");
​
hero("onReady", function() {
 scrollToTopButton.style.display = "none";
});
​
hero("onShutdown", function() {
 scrollToTopButton.style.display = "block";
});

Virtual Shopping Conversation has Ended

To understand when a conversation has been finished by an associate, you can use the

onConversationStatusUpdate event:

hero("onConversationStatusUpdate", function(event) {
 if (event.conversationStatus === "ended") {
 console.log(event.conversationId);
 console.log(event.associateId);
 console.log(event.associateEmployeeId);
 console.log(event.now);
 }
});

Please note the following:

Name Type Description

event.conversationId string
A unique ID to be able to
reference the specific
conversation.

event.associateId string

The Virtual Shopping ID of th
associate in the conversation
Only populates when the
shopper is using the Virtual
Shopping chat and the
conversation ends.

event.associateEmploye
eId

string

The Employee ID of the
associate in the conversation
Only displays if this feature ha
been enabled as part of the
Product Expert sign-up proce
Only populated when the
shopper is using the On-site
chat and the conversation en

event.now boolean

'True' indicates that the event
happened now, in real time.
'False' indicates the event
happened in the past. Only
populates when the shopper
using the Virtual Shopping ch
and the conversation ends.

As an example, to listen for a conversation which has ended whilst the shopper is still on the active page,
the following can be used:

(event.conversationStatus === "ended" && event.now) { … }

When the shopper has been down the Get Notified route there are two caveats to be aware of in
relation to the Conversation Ended event:

1. If the page is closed when the chat is finished then the end of chat event will fire the next
time the Virtual Shopping plugin is loaded; however the event will not include the
associate details.

2. If the shopper is following the Get Notified link on a device different to the one where they
started the original conversation then the end of chat event won't fire at all. For example, if
the shopper starts a chat on desktop, leaves a get notified message, receives a Get
Notified SMS and follows the link on their mobile device; then the end of chat event won't
fire.

Conversation Rated by Shopper

The following event can be used to read the rating value and feedback contents from the rating submission
by the shopper at the end of a chat. This can be used to populate in Google Analytics, for example:

hero("onConversationRatingSubmit", function(event) {
 console.log(event.conversationId);
 console.log(event.conversationStatus);
 console.log(event.associateId);
 console.log(event.associateEmployeeId);
 console.log(event.ratingValue);
 console.log(event.ratingFeedbackValue);
});

Department selected by Shopper

A shopper selects from the list of departments; note that this happens before the shopper sends their initial
message to start a conversation. The event payload contains the department's name and unique ID.

hero("onDepartmentSelect", function(event) {
 console.log(event.departmentName);
 console.log(event.departmentId);
})

Name Type Description

event.departmentName string The full name of the departme

event.departmentId string
This is the same ID used in

​Department Filtering

​ ​ ​

Need selected by Shopper

 A shopper selects from the list of needs (these are not enabled by default, please consult your Customer
Success Manager for details).

hero("onNeedSelect", function(event) {
 console.log(event.needName);
})

Leave a message form is displayed

The Hero "Get Notified" form is shown to a shopper. This happens when Product Experts are not currently
available and the shopper leaves a message. Note that the shopper must successfully enter a valid email
or phone number for this event to be triggered.

hero("onGetNotifiedInit", function

Leave a message form is submitted

A shopper leaves a message via the "Get Notified" form.

hero("onGetNotifiedSubmit", function() {});

Shopper searches for a nearby store

A shopper submits their postcode in order to find their nearest store. This feature is not enabled by default,
please consult your Customer Success Manager for details. Note that the shopper must successfully enter
a valid postcode for this event to be triggered.

hero("onPostcodeSubmit", function() {});

Shopper selects a store

A shopper selects a store from the location search results. This feature is not enabled by default, please
consult your Customer Success Manager for details.

hero("onStoreSelect", function(event) {
 console.log(event.storeName);
});

Interaction Event Methods

The Virtual Shopping Client API exposes a number of methods i.e. show and hide to allow you to
interact with the On-site Chat plugin.

Showing On-site Chat

This method will show the On-site Chat window. This can only be used if Virtual Shopping is available on
the page.

hero("show");

In this example, we show the On-site Chat when a button is clicked:

const openHeroButton = document.querySelector("button.open-hero");
​
openHeroButton.onclick = function() {
 hero("show");
};

Hiding On-site Chat

This method will hide the On-site Chat window. This will only close the chat window, if Virtual Shopping is
open on the page.

hero("hide");

In this example, we can hide On-site Chat when a button is clicked:

const closeHeroButton = document.querySelector("button.close-hero");
​
closeHeroButton.onclick = function() {
 hero("hide");
};

​

Adjust On-site Chat position

How to set the position of On-site Chat

Here we'll walk you through how to set precisely where you want to display Virtual Shopping on the
webpage. On the pages where On-Site chat can be opened, there is a Virtual Shopping icon - a button
that shoppers can click to open a chat. You can adjust its position by adding the code below to those
pages.

Within the On-site Chat Tag template for Google Tag Manager, under Hero Configuration Object, two rows
can be added to describe changes to the horizontal and vertical position of the icon:

<script>
 window.HeroWebPluginSettings = {
 applicationId: "HERO-XXXX",
 translateX: "-5px",
 translateY: "40px"
 };
</script>
<script>(function(i,a,m,h,e,r,o){i.HeroObject=e;i[e]=i[e]||function(){(i[e].q=i[e].q||[]).pu

translateX and translateY are CSS properties that will control the Launcher Icon
position using a value in pixels. For example, setting translateX to have a value of -50px will
adjust the On-site Chat Launcher so that it sits 5 pixels below the default position.

Moving the On-site Chat plugin will change the behaviour of the close/minimise function of the
chat. Normally the close/minimise button is in the plugin when the chat is open, moving the
plugin will move the close/minimise button to the top right corner of the chat window

​

Customise On-site Chat

How to customise the On-site Chat title

While the wording in your On-site Chat is configurable at a site wide level with this API you can customise
the title of the icon to match a specific product, category or department.

Through the Virtual Shopping API, the On-site Chat title can be updated with a specific category, subject or
department name, based on the web page or section.

This is useful when used alongside Virtual Shopping if particular sections
or pages within a website are restricted to a single department.

Department Filtering

The example below shows the default On-site Chat Launcher title on the left, and the updated On-site Chat

Launcher title on the right, where the term Department has been passed through.

How to implement a different On-site Chat title

To change the On-site Chat title after the chat has initialised, you can fire an event that makes the following
call:

hero("update", { category: { title: "Department" } });

In this example, the term Department is passed through and inserted into the On-site Chat title. When

using this method, the category parameter above will replace the ${ category } part of the following

title: 'Ask our in-store ${ category } team'.

When used, this interaction event method will update across all of the Hero Launcher types
which can be used: Static Launcher, Interactive Launcher and Needs Selector Launcher.

Creating a custom chat menu

Using advanced events, it is possible to customise the chat menu within the Virtual Shopping Messenger
so it can sit alongside Customer Service tools. This is useful way to ensure a good shopper experience by
diverting support queries away from Virtual Shopping to a Customer Service tool.

With and , you can create more complex interactions with Virtual
Shopping. This guide shows how a chat menu can be introduced using Virtual Shopping interaction
events.

Interaction Event Listeners Methods

Please note that this an example as to how you could use a custom extension.

Hiding and unhiding the Launcher Icon

When your chat menu is in operation, the On-site Chat Launcher Icon can be hidden using CSS with the
element

hero-launcher-container .

Virtual Shopping is not available

The onShutdown interaction event can be used to see if Virtual Shopping is not present on the page.
This could be if associates are unavailable or the Follow Rules indicate that it should not show.

hero("onShutdown", function() {});

Action: Hide the option to start a chat with Virtual Shopping

Virtual Shopping is available

The onReady interaction event can be used to understand if Virtual Shopping is ready to be used on the
page.

hero("onReady", function(event) {});

Action: Show the option to start a chat with Hero

Virtual Shopping is in use

The onReady interaction event can also be used to understand whether the shopper is currently in a

conversation using the messengerInUse Boolean.

hero("onReady", function(event) {
 if (event.messengerInUse) {}
 });

Action: Hide the chat menu altogether and show the On-site Chat icon, to benefit from the incoming
notifications and alerts if the shopper is in a chat, giving them the choice to open and close when required.

Hiding / Showing Virtual Shopping

When the shopper interacts with the On-site Chat option within the chat menu, if Virtual Shopping is
available, the On-site Chat can be shown using the interaction event.

hero("show");

Here is an example:

const openHeroButton = document.querySelector("button.open-hero");
​
openHeroButton.onclick = function() { hero("show"); };

​

Department Filtering

Controlling the department options available to your Shopper

By default all departments or teams configured for Virtual Shopping are shown to shoppers on all pages,
allowing the shopper to select the right department for them.

However, with the Department Filtering API you are able to restrict which departments are shown to the
shopper. Here are some examples of how you can use Department Filtering.

More strictly control the journey available to your shoppers, e.g. when viewing the Women's category
only allow them to start a chat with the Women's department, or when viewing a specific product only
allow them to start a chat with your team who are experts in that product.

Use availability filtering to only load a department when Associates are available in that department.
Virtual Shopping's standard availability features will show the plugin if just one department is
available, you can use this to hide departments on an individual level.

When there are multiple departments that the shopper can chat with, they need to select the
right one for them. However, if only one department is allowed to use Department Filtering then
the shopper does not need to select a department and will go straight into starting a chat, no
matter how many departments exist.

Department Filtering using Allow and Deny lists

Through the Virtual Shopping Client API, departments can be filtered using Allow and Deny lists. These
are fully customisable per page so you can tailor them to the unique URL structures of your website or
trigger them from events implemented by you to understand the category or product the shopper is
viewing.

To implement Department Filtering you will need to get the department IDs from Dashboard.
You can find these under Settings > Account Settings > Departments. Note, department IDs are
case sensitive.

If you don't see the option for Settings in the Dashboard navigation, or the option for
Departments, then contact ​help.virtualshopping@klarna.com

Department Filtering Rules

When allowing and denying departments, it's important to understand these rules:

When one department is added to the Allow list, any departments not listed will be hidden.

When one department is added to the Deny list, any departments not listed will still be
visible.

Only an Allow or Deny need to be used on any one page, however when using Allow and
Deny together, Allow will always take precedence.

Allowing Departments

For each type of Allow list below you will see two examples, one where only a single
department is allowed and one where multiple departments are allowed.

Allow a Department

Used when you only want to show certain departments on a page. Any departments not in the allow list
will not be shown.

Allowing a single department:

window.HeroWebPluginSettings = {
 departmentAllowList: [
 {
 id: "43a0B7JDdY" // Department ID
 }
]
};

Allowing multiple departments:

mailto:help.virtualshopping@klarna.com

window.HeroWebPluginSettings = {
 departmentAllowList: [
 {
 id: "43a0B7JDdY" // Department ID
 },
 {
 id: "27He0Lj38a" // Department ID
 },
 {
 id: "HIW739Olp1" // Department ID
 }
]
};

Allow a Department if it is Available

You only want to show a department on a page when an Associate is available in that department.

Allowing a single department:

window.HeroWebPluginSettings = {
 departmentAllowList: [
 {
 id: "43a0B7JDdY", // Department ID
 constraint: {
 departmentAvailable: true
 }
 }
]
};

Allowing multiple departments:

window.HeroWebPluginSettings = {
 departmentAllowList: [
 {
 id: '43a0B7JDdY', // Department ID
 constraint: {
 departmentAvailable: true
 }
 },
 {
 id: '27He0Lj38a', // Department ID
 constraint: {
 departmentAvailable: true
 }
 },
 {
 id: 'HIW739Olp1', // Department ID
 constraint: {
 departmentAvailable: true
 }
 }

]
};

Allow a Department if an Active Conversation Exists

You only want to show a department on a page when the shopper has a chat in progress with a
department.

Allowing a single department:

window.HeroWebPluginSettings = {
 departmentAllowList: [
 {
 id: "43a0B7JDdY", // Department ID
 constraint: {
 conversationInProgress: true
 }
 }
]
};

Allowing multiple departments:

window.HeroWebPluginSettings = {
 departmentAllowList: [
 {
 id: '43a0B7JDdY', // Department ID
 constraint: {
 conversationInProgress: true
 }
 },
 {

 id: '27He0Lj38a', // Department ID
 constraint: {
 conversationInProgress: true
 }
 },
 {
 id: 'HIW739Olp1', // Department ID
 constraint: {
 conversationInProgress: true
 }
 }
]
};

Allow a Department if a Previous Conversation Exists

You only want to show a department on a page when a user has had a previous conversation with that
department.

Allowing a single department:

window.HeroWebPluginSettings = {
 departmentAllowList: [
 {
 id: "43a0B7JDdY", // Department ID
 constraint: {
 conversationExists: true
 }
 }
]
};

Allowing multiple departments:

window.HeroWebPluginSettings = {
 departmentAllowList: [
 {
 id: '43a0B7JDdY', // Department ID
 constraint: {
 conversationExists: true
 }
 },
 {

 id: '27He0Lj38a', // Department ID
 constraint: {
 conversationExists: true
 }
 },
 {
 id: 'HIW739Olp1', // Department ID
 constraint: {
 conversationExists: true
 }
 }
]
};

Denying Departments

For each type of Deny list below you will see two examples, one where only a single
department is denied and one where multiple departments are denied.

Deny a Department

You only want to prevent one (or more) departments from showing. All other departments will show.

Denying a single department:

window.HeroWebPluginSettings = {
 departmentDenyList: [
 {
 id: "43a0B7JDdY" // Department ID
 }
]
};

Denying multiple departments:

window.HeroWebPluginSettings = {
 departmentDenyList: [
 {
 id: "43a0B7JDdY"
 },
 {

 id: "27He0Lj38a"
 },
 {
 id: "HIW739Olp1"
 }
]
};

Deny a Department if it is Unavailable

Do not show a department if a department is unavailable, or a shopper hasn't had a conversation in that
department.

Denying a single department:

window.HeroWebPluginSettings = {
 departmentDenyList: [
 {
 id: "43a0B7JDdY", // Department ID
 constraint: {
 departmentAvailable: false
 }
 }
]
};

Denying multiple departments:

window.HeroWebPluginSettings = {
 departmentDenyList: [
 {
 id: '43a0B7JDdY', // Department ID
 constraint: {
 departmentAvailable: false
 }
 },
 {
 id: '27He0Lj38a', // Department ID
 constraint: {
 departmentAvailable: false
 }
 },
 {
 id: 'HIW739Olp1', // Department ID
 constraint: {
 departmentAvailable: false
 }

 }
]
};

Deny a Department if Previous Conversation Does Not Exist

Deny a department from showing if a conversation does not exist. This will only show a department if a
conversation has already happened with this department.

Denying a single department:

window.HeroWebPluginSettings = {
 departmentDenyList: [
 {
 id: "43a0B7JDdY", // Department ID
 constraint: {
 conversationExists: false
 }
 }
]
};

Denying multiple departments:

window.HeroWebPluginSettings = {
 departmentDenyList: [
 {
 id: '43a0B7JDdY', // Department ID
 constraint: {
 conversationExists: false
 }
 },
 {
 id: '27He0Lj38a', // Department ID

 constraint: {
 conversationExists: false
 }
 },
 {
 id: 'HIW739Olp1', // Department ID
 constraint: {
 conversationExists: false
 }
 }
]
};

Configurations

Attribute Required Type Note

id Mandatory string

Department IDs can
requested from Virtu
Shopping for Stagin
and Production reta
applications.

constraint Optional object ​

constraint.depar
tmentAvailable

Optional boolean

The department's
current availability
state determines if it
considered to be in
Allow / Deny list.

constraint.conve
rsationInProgres
s

Optional boolean

Whether the Shoppe
has a conversation
progress determines
it is considered to be
the Allow / Deny list

constraint.conve
rsationExists

Optional boolean

Whether the Shoppe
has an existing
conversation with th
department determin
if it is considered to
in the Allow / Deny l

Suggested Checklist for Creating New Departments and Implementing
Department Filtering While Virtual Shopping is Already Live on Your Site

When a department is created through your Dashboard it will immediately show across all
pages where the On-site Chat plugin appears. If this is a problem then you may want to follow
the order of steps below for rolling out Department Filtering.

1. Implement Department Filtering for your existing departments, this will mean that the plugin continues
to behave as normal while you create the new departments

2. Create new departments Settings > Account Settings > Departments > Add Department

3. Assign relevant Associates to new departments, remember Associates can be in multiple departments

4. Update Department Filtering to use the new department IDs where you want them to appear

Using Department Filtering to deactivate a department

Virtual Shopping does not currently support deleting or removing departments. If you no longer want a
department to be available to your Shoppers then simply implement Department Filtering and add the
relevant department to a deny list on all pages.

Redirect to Customer Service

Sending shoppers to the right place

Sometimes, shoppers will start a Virtual Shopping chat when they actually want to speak to your Customer
Service team. It's easy to redirect these shoppers before or during a Virtual Shopping chat so that they
always reach the right person and your team members only receive relevant chats.

You can redirect shoppers to your Customer Service in 3 ways:

Before a chat:

Redirect before a chat with Filtering

Redirect before a chat with the Needs Selector

During a chat:

Redirecting during a chat

Before we take a look at these opportunities, it's first important to place On-site Chat correctly on your
website in relation to your Customer Service pages or tool.

Placing On-site Chat in relation to Customer Service pages

On-site Chat should appear on pages that are most likely to drive sales queries, usually category and
product-level pages. As a result, it is not normally suitable to place On-site Chat on your Customer Service
pages or home page.

To ensure Hero does not appear on your homepage, we recommend you first
 and then use to ensure it is not

showing on the home page.

deploy Hero
across your whole website URL blacklisting and whitelisting

Placing On-site Chat in relation to a Customer Service tool

If you are using another tool on your website dedicated to handling Customer Service chats, you will want
to ensure that it is not showing at the same time as the Virtual Shopping On-site Chat. You can do this
using ​Interaction Events

Every time a page loads, On-site Chat fires an event to the page to say if it will load and what state it will
be in. For example, it might say it’s going to load with the On-site Chat open.

With a you can understand if Virtual Shopping is loading to the page and decide
whether or not to load your Customer Service chat solution instead. To trigger your Customer Service tool
in this way, you can use an Interaction Event Listener. Virtual Shopping offers some out-the-box scripts as
examples, or you can build one yourself.

 simple listener script

Redirect before a chat with Filtering

Using Customer Service Filtering

If a shopper has opened the Virtual Shopping Messenger, there is signposting to guide them to your
existing Customer Service page. This is a standard part of the Virtual Shopping setup process and you
don't need to implement anything further.

Redirect before a chat with the Needs Selector

Using the Needs Selector ​

You can give shoppers the option to select the nature of their query before they start a chat using using the
Needs Selector. If the shopper selects the Customer Service category then they will be redirected to
another page on your website, or to another tool.

When a shopper chooses this option, Virtual Shopping then redirects them to your Customer Service
page. If you have another tool you would like to direct the shopper to then you can set up a basic listener
script to hide On-site Chat and open the other tool to seamlessly put your customer into your preferred
channel.

This option requires the Needs Selector to be active and the Customer Services option needs
to be turned on. If you are interested in setting up the Needs Selector in Hero Messenger,
please get in touch with your Customer Success Manager.

Virtual Shopping offers a number of for Customer Service tools or you
can create your own.

example out-the-box listener scripts

Breakdown of steps

Follow these simple steps to enable this customer journey:

1. Add the onCustomerServiceRedirect listener script to your website

Here is an example of how to implement the listener script:

hero("onCustomerServiceRedirect", function (event) {
 var customerServiceUrl = event.customerServiceUrl;
 window.open(customerServiceUrl, '_blank');
});

2. Let the Klarna team know that you have implemented the listener script. They will then switch on the
Needs Selector in Virtual Shopping Messenger so that shoppers can choose to be redirected to your
Customer Service tool or Customer Service page

3. Test the implementation. We recommend you test that the integration is behaving as expected on
Staging before pushing to Production

Redirecting during a chat

Redirecting shoppers when in a chat

If a shopper has already started a chat with a member of your team but would be better served by
Customer Service, team members can transfer that shopper to Customer Service during a chat.

After the team member taps on 'Redirect to Customer Services' button in the app there are two points in the
journey where you can complete the switchover. Choose whichever gives the shopper experience you
want. The solution is the same, it just relies on listening to a different on page event. With a simple listener
script you can detect the event, close Virtual Shopping On-site Chat and open your Customer Service tool.

1. As soon as the transfer journey is initiated an event called

onCustomerServiceInstantRedirect will fire to the page.

2. After this a clear call to action for the shopper to chat to Customer Services is sent into the chat; when

clicked this fires an event called onCustomerServiceRedirect

This means you can instantly switch tools, or give your shopper the choice to select to talk to Customer
Service.

Virtual Shopping offers a number of for Customer Service tools or you
can create your own.

example out-the-box listener scripts

Breakdown of steps

Follow these simple steps to enable this customer journey:

1. Add the onCustomerServiceRedirect listener script to your website

Here is an example of how to implement the listener script:

hero("onCustomerServiceRedirect", function (event) {
 var customerServiceUrl = event.customerServiceUrl;
 window.open(customerServiceUrl, '_blank');
});

2. Let the Klarna Virtual Shopping team know that you have implemented the the Listener Event script.
They will then switch on the transfer feature so your teams can send the redirect button into the chat

3. Test the implementation. We recommend you then test the integration is behaving as expected on
Staging before pushing to Production

Sharing the conversation history with a customer service agent

If you would like to share the conversation with a customer service agent, we provide a transcript property
containing the conversation history. The transcript property can be accessed from the event object of the

onCustomerServiceRedirect and onCustomerServiceInstantRedirect events.

Here is an example of how this can be implemented. In this example, the third-party customer service tool
is initialised, and the transcript is sent as the first message from the shopper:

hero("onCustomerServiceRedirect", function (event) {
 customerServiceSDK.init();
 customerServiceSDK.sendMessage(event.transcript);
});

The transcript value is a string, and an example value is shown below:

Shopper [11:13, 11th Aug 22]
Hi, I need help with a return
​
Expert [11:14, 11th Aug 22]
Hi there, Our customer service team can help with that. I'll transfer you!

Example Listener Scripts

Integration scripts

Using the Virtual Shopping Client API, you can set up a redirect to any Customer Service tool. Virtual
Shopping gives you the means to create your own integration or use an out-the-box integration with:

Kustomer

iAdvize

RingCentral

Custom integration scripts

If you would like to create your own integration, you can do so using the Virtual Shopping Client API;
create a Customer Service redirect listener to open your own Customer Service tool when this event is
fired.

The name for this event is onCustomerServiceRedirect and an example integration would look
like this:

hero("onCustomerServiceRedirect", function (event) {
 var customerServiceUrl = event.customerServiceUrl;
 window.open(customerServiceUrl, '_blank');
});

​

Out-the-box Example scripts

This option means you don't need to integrate the onCustomerServiceRedirect listener script.
Instead, you can just load an additional script to the page.

We suggest you load scripts in this order:

1. Customer Service Redirect Script (a list of example scripts follows below)

2. Customer Service tool script

3. Virtual Shopping script

Kustomer

Here is an example of a custom redirect script for Kustomer:

hero('onCustomerServiceRedirect', function (a) {
 // 1. add the kustomer script to the page
 !function(a,b,c,d){a.Kustomer=c,c._q=[],c._i=[],c.init=function(a){function b(a,b){a[b]=fu
​
 // 2. intialise the kustomer chat client
 Kustomer.init('YOUR_API_KEY');
​
 // 3. start and open the kustomer chat client and hide hero
 Kustomer.start({ icon: !1 }, function () {
 Kustomer.open();
 hero('hide');
 });
});

iAdvize

Run this to see an example of a custom redirect script for iAdvize:

(function () {
 const ONE_SECOND = 1000;
 const THIRTY_SECONDS = ONE_SECOND * 30;
​
 let interval;
 let heroIsReady = false;
 let areAnyHeroConvInProgress = false;
​
 const isElementVisible = (element) => {
 if (element) {
 return window.getComputedStyle(element).display !== 'none';
 }
 return false;
 };
​
 const hideByElementSelector = (selector) => {
 const css = `${selector} { visibility: hidden !important; }`;
 const head = document.head || document.getElementsByTagName('head')[0];
 const style = document.createElement('style');
 head.appendChild(style);
 style.type = 'text/css';
 style.setAttribute('data-hero-override', '');
 style.appendChild(document.createTextNode(css));
 };
​
 const hideByElementSelectors = (selectors) => {
 selectors.forEach(hideByElementSelector);
 };
​
 const getIadvizeStaticButton = () => {
 const iadvizeStaticButton = document.querySelector('#idz_btn #idz_fonline');
 if (iadvizeStaticButton) {
 return iadvizeStaticButton;
 } else {
 const iframe = document.querySelector('iframe[id*="iframe-notification"]');
 return iframe && iframe.contentDocument.querySelector('button[class*="NotificationButt
 }
 };
​
 const iadvizeShow = () => {
 const styles = document.head.querySelectorAll('style[data-hero-override]');
 styles.forEach((style) => {
 if (style) {
 style.remove();
 }
 });
 };
​
 const iadvizeHide = () => {
 hideByElementSelectors([
 `div[id^='idz'], div[id*=' idz']`,
 `iframe[id^='iframe-notification'], iframe[id*=' iframe-notification']`,
]);
 };

​ const iadvizeOpen = () => {
 const iadvizeStaticButton = getIadvizeStaticButton();
 if (iadvizeStaticButton) {
 iadvizeStaticButton.click();
 }
 };
​
 const heroShow = () => {
 const heroContainer = document.querySelector('#hero-iframe-container');
 heroContainer.style.visibility = 'visible';
 };
​
 const heroHide = () => {
 const heroContainer = document.querySelector('#hero-iframe-container');
 heroContainer.style.visibility = 'hidden';
 };
​
 const heroShutdown = () => {
 heroHide();
 window.hero('shutdown');
 clearInterval(interval);
 };
​
 const getIadvizeElements = () => {
 const iadvizeStaticButton = getIadvizeStaticButton();
 const iadvizeActiveButton = document.querySelector('#idz_chatbar_mini');
 const iadvizeChatWindow = document.querySelector('#idz_chatglobal');
 return [iadvizeStaticButton, iadvizeActiveButton, iadvizeChatWindow];
 };
​
 const getIadvizeStatus = () => {
 const [iadvizeStaticButton, iadvizeActiveButton, iadvizeChatWindow] = getIadvizeElements
 const iadvizeInStaticState = isElementVisible(iadvizeStaticButton);
 const iadvizeConvIsHidden = isElementVisible(iadvizeActiveButton);
 const iadvizeConvIsVisible = isElementVisible(iadvizeChatWindow);
 if (iadvizeInStaticState) {
 return 'static';
 } else if (iadvizeConvIsHidden || iadvizeConvIsVisible) {
 return 'active';
 } else {
 return null;
 }
 };
​
 const processStatus = () => {
 const iadvizeStatus = getIadvizeStatus();
 const iadvizeIsOnThePage = !!iadvizeStatus;
 if (iadvizeIsOnThePage && heroIsReady) {
 if (iadvizeStatus === 'active' && !areAnyHeroConvInProgress) {
 iadvizeShow();
 heroShutdown();
 }
 clearInterval(interval);
 }
 };
​

 /**
 * Step 1. Hide both iadvize and the Hero messenger from the shopper.
 */
 iadvizeHide();
 heroHide();
​
 /**
 * Step 2. Check the status of iadvize every second. If iadvize is actively
 * being used, show iadvize and shutdown the Hero messenger.
 */
 processStatus();
 interval = setInterval(processStatus, ONE_SECOND);
​
 /**
 * Step 3. Listen to Hero onReady event. If this event is fired, show the Hero
 * messenger whilst continuing to check the status of iadvize every second
 * (just in case iadvize is actively being used).
 */
 window.hero('onReady', ({ messengerInUse }) => {
 heroIsReady = true;
 areAnyHeroConvInProgress = messengerInUse;
 heroShow();
 processStatus();
 });
​
 /**
 * Step 4. Listen to Hero onCustomerServiceRedirect event. If this event is
 * fired, show iadvize, open iadvize and shutdown the Hero messenger.
 */
 window.hero('onCustomerServiceRedirect', ({ customerServiceUrl }) => {
 const iadvizeStatus = getIadvizeStatus();
 const iadvizeIsOnThePage = !!iadvizeStatus;
 if (iadvizeIsOnThePage) {
 iadvizeShow();
 iadvizeOpen();
 heroShutdown();
 } else {
 window.open(customerServiceUrl, '_blank');
 }
 });
​
 /**
 * Step 5. Stop checking the status of iadvize every second after 30 seconds
 * pass.
 */
 setTimeout(() => {
 clearInterval(interval);
 }, THIRTY_SECONDS);
})();

RingCentral

Run this to see an example of a custom redirect script for RingCentral:

<script async type="text/javascript" src="https://cdn.usehero.com/ringcentral.js"></script>

Integrate Zendesk
Simple steps to connect Zendesk and Virtual Shopping.

Sending shoppers to the right place

Using our Virtual Shopping integration with Zendesk, product experts can easily transfer shoppers to
Customer Service teams, without the shopper needing to leave the Messenger.

Please note: the Zendesk and Virtual Shopping integration is only available if you have a
Zendesk Enterprise licence.

In this article, we’ll walk through the simple steps to integrate Zendesk with Virtual Shopping following an
activation flow in the Dashboard. To get set up, follow the steps below:

Step 1: Before you begin

1. Before you start the setup flow, please ensure:

The user with admin permissions for Settings is logged into the Dashboard

Ensure you've been approved for the Zendesk Integration. Simply send an email to
 including your name, role, and company. In this email, please

specify if we should switch on the in-app transfer menu, the Needs Selector or both.
help.virtualshopping@klarna.com

Your Partnership Success Manager is aware that you are interested in the Zendesk integration

If you have a Content Security policy in place, we recommend you put in place the directives set out by

Zendesk .here

Chat triggers are switched off. This is because these messages may interfere with communications we
have created within the integration. We recommend at a minimum, you disable the ‘Chat Rescuer’
chat trigger type. To disable a chat trigger from the Zendesk Chat Dashboard, read . this article

If you are already using our ‘onCustomerServiceRedirect’ listener script from your website you should
remove this once the Zendesk integration is activated.

2. In the Dashboard, go to the Account Settings tab for the website and region you want to integrate with
Zendesk. Choose 'Integrations' at the top of the page

3. Click 'Learn More' next to the module for the Zendesk Integration

4. Now click on ‘Install’ to begin the activation flow

mailto:help.virtualshopping@klarna.com
https://developer.zendesk.com/documentation/classic-web-widget-sdks/web-widget/integrating-with-google/csp/
https://support.zendesk.com/hc/en-us/articles/4408884148762#topic_tnp_czx_zhb

Step 2: Activating your integration

1. Enter your Zendesk Account Key to connect your Zendesk account to Virtual Shopping, click 'Next'

To find your Zendesk Account key, visit Zendesk documentation .here

2. Enter your chat shared secret in order to persist Shopper conversations, click 'Next'

To find out how to generate a chat shared secret, visit Zendesk documentation . here

Please note: if at a later point you ever update your shared secret, you will need to uninstall the
integration and then reinstall it using the new shared secret.

https://support.zendesk.com/hc/en-us/articles/360022366613-How-do-I-find-my-Chat-Account-Key-
https://support.zendesk.com/hc/en-us/articles/360022185314#topic_s5k_dvq_4fb

3. Here you can see which of your Customer Service teams are configured in your Zendesk account.
Choose which Customer Service teams you'd like to display in Virtual Shopping for shoppers to choose
from. When you've selected the Customer Service teams, click 'Confirm'

4. You will now be returned to the 'Integrations' page from your Account Settings and will see the
integration status as 'Active’. Nice job! Your Zendesk integration is now live

How to install the Zendesk integration.mp4 15MB

Binary

Managing your integration

1. To manage your current Zendesk integration settings, click on the icon with 3 dots from the 'Integrations'
page of your Account Settings and select 'Manage’

2. Here, you can choose to edit your Zendesk Account key, chat shared secret, or linked Customer Service
teams. You can also choose to 'Deactivate Zendesk' if you want to deactivate the integration

3. Once you've made any updates, click 'Save changes'

Managing the Zendesk Integration.mp4 11MB

Binary

Deactivate or reactivate the Zendesk Integration.mp4 12MB

Binary

Uninstalling your integration

Once you uninstall your Zendesk integration, you will no longer be able to transfer shoppers to Customer
Service teams using Zendesk.

If you plan to uninstall your Zendesk integration, please inform your Partnership Success
Manager and request that the Customer Service Need is either switched off or changed to a
redirect to a Customer Service page on your website by raising a ticket to

.help.virtualshopping@klarna.com

1. To uninstall the Zendesk Integration, click on the icon with 3 dots from the 'Integrations' page of your
Account Settings and choose 'Uninstall.' Then, in the window that appears, confirm you want to uninstall
the Zendesk integration

2. From the 'Integrations' page, check your status is no longer set as 'Active'

Uninstall the Zendesk Integration.mov 3MB

Binary

mailto:help.virtualshopping@klarna.com

Update customer details

The Virtual Shopping Client API exposes an update method which can be used to provide Virtual
Shopping with relevant data such as a customer email address or a customer ID number. This would
enable you to tie Virtual Shopping data back against your own by ensuring there is a consistent data key.

There are a number of templated Shopper data exports which can be set up by our Support
team and sent to an SFTP. To have this arranged please raise a support ticket through your
CSM.

Events

Update event fields:

Name Value Type Required Description

customer
See customer
subsection

Object yes Customer deta

Customer object subsection fields:

Name Value Type Required Description

id ​ string no Customer ID

firstName ​ string no
Customer first
name

lastName ​ string no
Customer last
name

email ​ string no
Customer ema
address

phoneNumber ​ string no
Customer pho
number (E.164

metadata ​ object no
Additional
customer data

Update event example:

hero("update", {
 customer: {
 id: "123",
 firstName: "First",
 lastName: "Last",
 email: "example@example.com",
 phoneNumber: "+447901234567",
 metadata: {}
 }
});

Set up Contacts

Growing customer relationships with Contacts

Using Virtual Shopping Contacts, your team is able to build a long-term relationships with customers.
Once a customer has shared the contact details for their preferred channel teams can keep the
conversation going over text, email, or WhatsApp to encourage repeat purchases, all via the Store app.

To set up email or SMS for Contacts, please get in touch with your Customer Success Manager, and
Klarna can switch on these channels and support your team with training.

To set up WhatsApp for Contacts there are some dependencies on you; first we'll review the shopper
journey and then the steps to integrate:

How WhatsApp for Contacts works

Set up WhatsApp for Contacts

Please note: WhatsApp for Contacts should only be used for one-to-one chats. WhatsApp does
not currently approve marketing campaigns, so please ensure you do not use this service for
mass marketing to avoid the risk of the service being blocked.

​

How WhatsApp for Contacts works

What happens in a chat over WhatsApp

1. First, a team member invites a shopper to give their contact details so they can begin chatting over
WhatsApp

2. The shopper then receives a WhatsApp message asking them to opt-in

​

3. Following a successful opt-in by the shopper the team member can contact the shopper at any time by
choosing a templated message. Virtual Shopping will work with you to create suitable template messages
that will be approved by WhatsApp.

​

4. Once the shopper replies, the team member and shopper can chat over WhatsApp freely for 24 hours

To set up WhatsApp as a channel for Contacts follow the guidance below:

Set up WhatsApp for Contacts

Set up WhatsApp for Contacts

Setting up WhatsApp for Contacts

1. Prepare your application to WhatsApp

Before getting started, Virtual Shopping will need send an application to Facebook to activate WhatsApp
as a channel for messaging customers via the Store App.

So that Virtual Shopping can submit this application, please take the following steps:

1. Send Virtual Shopping your Facebook Business ID. Find out how to source this ID ​here

2. ​ and accept the Terms of Service. In the Twilio Console, navigate to
'Programmable SMS', select 'WhatsApp' and choose 'Accept' from the dropdown
Create a Twilio Console account

3. Send Virtual Shopping the Account Security Identifier (SID) for your Twilio Console account

Virtual Shopping will then:

Set up a sub-account for you in Virtual Shopping's Twilio Console

Configure the supplied phone numbers for WhatsApp usage in Twilio Console

Once the form is complete, submit to Facebook for approval

Please note: your WhatsApp account can support up to 25 numbers. Virtual Shopping will need
to use only one of these as routing is handled seamlessly in the background

2. Approve the request from Twilio to send messages on your behalf

Virtual Shopping will let you know once the application has been submitted to WhatsApp. Once it has
been approved, please take the following steps:

1. Go to and click 'Business Settings' to the left of your screen under 'Home'. To
the left of your screen, choose 'Requests' under the key icon. Select 'Invitations' and choose 'Accept'.
WhatsApp will review your Display Name within 3 days, as soon as your Facebook Business
Manager account is verified and you have accepted Facebook’s invitation to allow Twilio to send
messages on your behalf

business.facebook.com

2. Once WhatsApp has approved your Display Name and Virtual Shopping has configured your phone
numbers, Virtual Shopping will submit 'Templates' for approval

3. Once the templates are approved, your team can begin sending customers messages using these
Templates

4. If you would like to change Templates in the future, Virtual Shopping can submit others for review at
any time

https://www.google.com/url?q=https://www.facebook.com/business/help/1181250022022158&sa=D&source=editors&ust=1613419043486000&usg=AOvVaw3v45AhAf98Zg9z7YG0lqEL
https://www.twilio.com/login?g=%2Fconsole%3F&t=2b1c98334b25c1a785ef15b6556396290e3c704a9b57fc40687cbccd79c46a8c
http://business.facebook.com/

Verified Account status

It's good practice to try to set up a Verified Account so that when customers receive a WhatsApp
message from your team, your brand's profile icon will appear with a green checkmark and
show your brand name instead of a phone number.

Virtual Shopping can ask Twilio to submit a request to have your WhatsApp profile considered
to be listed as 'Verified' by Facebook. But please note that Twilio cannot guarantee success; at
time of writing only about 10% of all WhatsApp profiles are approved as Verified accounts.

Data API

If you would like access to the Data API, contact your account manager and they can
help get you started.

With the Data API, you can securely consume data held by Virtual Shopping into your other systems. You
could use this to grow or augment your CRM, to better understand product expert performance and
calculate commission, or as data for targeted marketing campaigns.

As the data controller, it is your responsibility to ensure that you have suitable permission to use
the data for any purposes you chose to, as the data processor Klarna is not responsible for
advising you on this.

Data Points Available through the Data API

Currently the Data API makes the following data points available:

Shopper (chat)

Name Data Point Description

ID _id

The Shopper ID automatically
issued by Klarna Virtual
Shopping, can be used to
identify the specific shopper
across data points

Location location
The location of the user, store
as a GPS co-ordinate

Created date _created_at

The date the user was create
Klarna Virtual Shopping's
system. This will be when the
started their first chat.

First Name firstName

The first name provided by th
user when they started their
chat, this is optional so may n
be stored

Shopper Name shopperName
The default name attributed to
an anonymous shopper

Last online time lastOnlineTime
The last time that Virtual
Shopping logged activity for t
user on your website

User agent userAgent
The browser, device and
operating system that the use
first used Virtual Shopping fro

Username username
Another form of ID that is use
link specific messages to a
shopper

Visitor visitor
Another form of ID that is crea
for a user before they have be
issued a Shopper ID

Shopper (contact)

Name Data Point Description

ID _id

The Contact ID automatically
issued by Virtual Shopping, c
be used to identify the specifi
shopper across data points.

User ID userId

The Shopper ID automatically
issued by Virtual Shopping, c
be used to identify the specifi
shopper across data points.

Acquisition date acquisitionDate
The date the shopper was
added to Contacts

Updated date _updated_at

The date that the user record
was last updated or a messag
was sent or received

Associate ID associateId

The Associate ID of the Produ
Expert the Shopper is current
assigned to

First Name firstName

The first name provided by th
user when they were added t
Contacts

Last Name lastName

The last name provided by th
user when they were added t
Contacts

Phone Number phoneNumber

The users telephone number
depending on the channel the
have been added by this may
not be present

Email email

The users telephone number
depending on the channel the
have been added by this may
not be present

Birthday birthday
The date of birth of the user.
Optional

State state

Covers the full variety of state
the user could be in, including
opted state or re-assigned

Opt-in state optInState

The opted state of the user,
indicating if they have finishe
opting in or have opted out

Notes notes

Any notes captured by the
product expert about the
shopper

Product Expert

Name Data Point Description

ID _id
The Associate ID of the produ
expert

Approval Status approvalStatus
The approval status of the us
indicating if they are approve
claim chats or not

Email email
The user's registered email
address

First name firstName
The user's first name as given
during registration

Last Name lastName
The user's last name as given
during registration

Online status available
The status indicating if they a
online in the app

Chat status busy
The status indicating if they a
in a chat

Created at _created_at
The date the user started
registration

Spoken Languages spokenLanguages
The languages spoken by the
user as selected when creatin
or editing their profile

Store name storeName
The user's currently assigned
store

Store ID storeId
The ID in Virtual Shopping's
systems of the user's currently
assigned store

Employee ID employeeId
The employee ID of the user
provided by them during
registration

Shopper events

You can retrieve Shopper events tracked by the frontend implementation (Related section:
)https://docs.virtual-shopping.klarna.com/implementation/track-shopper-events

https://docs.virtual-shopping.klarna.com/implementation/track-shopper-events

Name Data Point Description

ID _id Event ID

Type type Event type

Time time
Date and time when the even
occured

User ID userId

The Shopper ID automatically
issued by Virtual Shopping, c
be used to identify the specifi
shopper across data points

Session ID sessionId
Analytics session identifier
which can be used to group
events into a browsing sessio

Product SKU productSku

Product SKU provided by the
frontend tracking

(available for: user-product-vi
user-basket-add, user-basket
delete)

Product Quantity productQuantity

Quantity of product added to
basket

(available for: user-basket-ad
user-basket-delete). Will be
available depending on fronte
implementation.

Category category

Name of category that was
viewed by the shopper

(available for: user-category-
view). Will be available
depending on frontend
implementation.

Search terms searchTerms

Search terms entered by the
shopper
(available for: user-search). W
be available depending on
frontend implementation.

Page location location

URL of the page of the event
(available for: user-category-
view, user-search). Will be
available depending on fronte
implementation.

Attributed Associate ID attributedAssociate
ID of associate who is attribut
the sale - will not be set if the
order is not attributed to anyo

Order ID orderId

Unique order ID provided by t
frontend implementation. It
should match the order ID in
your system

Order subtotal subtotal Order subtotal

Order currency currency Order currency

​

Steps to implement the Data API

1. Review the data points available and consider how you want to use the data and in what systems

2. Use the to understand how to authenticate with the Data API and how to
integrate it. Get estimates from the developers who will be doing the work.

technical documentation

3. Contact who can activate permission for you to implement the API
and provide you with your client ID, client secret, and the endpoint to use.

help.virtualshopping@klarna.com

4. Use the to implement the APItechnical documentation

​

Planned updates to the Data API 🚀

We plan to continuously work to advance and better our Virtual Shopping Data API.

Here is an idea of what’s to come:

Phase 4 - Conversation text message data available as well as all other conversation message data,
including recommended products and media

Phase 5 - All performance data available

FAQ

Why would I use this?

Our API gives you detailed insights that can be used for performance tracking as well as targeted ad
campaigns.

How hard will this be for my team to implement?

We have a user-friendly set of API docs to ensure the integration process is as simply laid out as possible.
Don’t forget, we are here to help too (help.virtualshopping@klarna.com). Time to implement varies by
merchant.

How do I get access to this?

Please contact your customer success manager if you wish to gain access to the API. They will be able to
arrange for you to be provided with a token to get you started.

https://data-api-doc.api.usehero.com/
mailto:help.virtualshopping@klarna.com
https://data-api-doc.api.usehero.com/

Is there a cost associated with it?

No, there is no cost associated with this.

What do I have legal rights to use this data for?

As the data controller, it is your responsibility to ensure that you have suitable permission to use the data
for any purposes you chose to, as the data processor Klarna is not responsible for advising you on this.

Test Virtual Shopping

Overview

Ensure your Virtual Shopping implementation is working correctly

Once you have added the Virtual Shopping JavaScript to your pages and set up Shopper Event tracking,
we recommend you test that On-site Chat is working on your website and that your configurations are set
up correctly.

To help you do this we've put together this simple guide to help you feel confident that Virtual Shopping is
behaving as expected and solve common challenges that may arise during set up.

In this section you'll learn:

How to test Virtual Shopping tag

How the Inspector Tool works

How to test Shopper Event tracking

How to troubleshoot common issues

To test Virtual Shopping, you will need to start a real chat with On-site Chat on your website, and claim it
on your mobile device. The Practice Chat functionality can't be used for testing purposes.

Before you can move to these tests, the Virtual Shopping team will need to set up your
configurations within the launch process. Reach out to your Customer Success Manager or
assigned Launch Manager before taking this step.

Get started

Inspector Tool

Test the Virtual Shopping tag

Test Shopper Event tracking

Inspector Tool

Quickly spot common issues while setting up Virtual Shopping

With the Inspector Tool, you can quickly spot common issues when setting up Virtual Shopping. If you are
working on Virtual Shopping implementation, we recommend using this tool to support with a smooth
and efficient launch process.

All the information you need on how to fix issues identified with the Inspector tool can be found
in the .Dev Docs

The Virtual Shopping Inspector Tool loads on any website with the implemented,
and displays via a panel on your browser session. To learn how to use the tool and its range of
capabilities, jump straight in:

Virtual Shopping Tag

How to load the tool

What you can inspect

​

https://docs.usehero.com/
https://docs.virtual-shopping.klarna.com/implementation/adding-hero

How to load the tool

How to open the Inspector Tool 📋

How to load Virtual Shopping Inspector Tool

Firstly, open the website where you have added the and .Virtual Shopping Tag Shopper Events

Then add inspect-virtual-shopping=true to the end of your URL as a query parameter, and
reload the page.

For example:

https://mywebsite.com/uk/index.html?inspect-virtual-shopping=true

You will only need to do this once per website (domain). If you have multiple subdomains/environments
open, you will need to load this separately on each browser. You will also need to do this if you clear the
website cookies or each time you use Incognito Mode. After the first load of the Inspector Tool, the browser
will remember that it was loaded and it will then load it automatically across all the pages of the website
where the Virtual Shopping Tag is added.

https://docs.virtual-shopping.klarna.com/implementation/adding-hero
https://docs.usehero.com/implementation/track-shopper-events

What you can inspect

The Inspector Tool can check for common issues in 3 key areas:

Check Application ID & Merchant Name

Check Display Rules

Check Shopper Events

Additional features (dependent on setup) can be viewed to troubleshoot any issue:

Check Department Filtering configuration

Other Information

Check Application ID & Merchant Name

Checking if the right App ID is in place

You can use the Inspector Tool to check the used to load the on-site chat on your
website. This can be used to ensure the correct Staging or Production App ID has been used to launch
Virtual Shopping.

Application ID (App ID)

The Merchant Name, which corresponds to the Application ID, will be displayed. This provides additional
confirmation that the correct application ID has been implemented.

If no App ID has been added, the message No Application ID found will display. If this happens
it's a good idea to check that your team has deployed the correct .App ID

Your App IDs would have been sent to you when you began the setup process. If you are
unsure what your App ID is, please get in touch with your Customer Success Manager.

https://docs.usehero.com/implementation/adding-hero#javascript-code-snippets-for-staging-and-production
https://docs.usehero.com/implementation/adding-hero#javascript-code-snippets-for-staging-and-production

Check Display Rules

Checking why Virtual Shopping is not displaying

The Display Rules section helps you understand whether or not the Virtual Shopping chat is displaying on
your online store. Getting a clear view of what rules are in place you can help you quickly understand if
there is an issues as a result of unwanted rules being in place, or if Virtual Shopping is behaving as
expected.

Display Rules indicate:

if the store is open/closed

if there are product experts online

if all product experts are busy

if the leads queue is full

display rules (pages allowed or denied to display the on-site chat)

Geo-restrictions (if enabled)

Any rules that allow Virtual Shopping chat to display are shown in green. Rules that do not allow the chat
to display are shown in red.

Check Shopper Events

The Events section lists all of the recorded since a shopper started their browsing
session.

Shopper Events

Results Panel

There are 3 columns in the results panel:

Events Timestamp Status

The event name. If the event
name is not supported,

Invalid will display instead.

The timestamp when the event
was created.

The status of the Track Shopp
Event.

Statuses

If issues are detected with an event, the Inspector Tool will indicate this before the status value.

There are 4 possible statuses:

https://docs.usehero.com/implementation/track-shopper-events

Status About

Queued

The events that have been recorded in the
browsers local storage but not yet sent to Hero A
This happens when the visitor is browsing the
website but has not yet started a chat. If the
shopper never starts a chat, these events will no
be sent to Virtual Shopping. Once a chat has
started the Product Expert will be able to see an
other items the customer had been looking at to
better understand browsing habits.

In Progress
The event is being sent to the Hero API. This is
only a temporary status whilst the events are bei
sent to Virtual Shopping.

Sent Events that were successfully sent to the Hero A

Failed
Events for which the Hero API responded with a
error.

Here are some examples of a Failed status and the reason for that failure:

Failed status

Payload Details

You can expand or collapse an event by clicking on it to see more information about the payload of that
event.

Subsections of a Payload

Depending on the event type, the details of an event can have multiple subsections. For example, a
Product View event will have a subsection, and a Purchase event will have both a

 and subsection.
Product Array Purchase

Array Product Array

Each subsection has 4 columns:

​
Field

About

Property The name of the field from the payload.

Type The type of the value of the property.

Value
The value of the property. If there is no value for
property a message “BLANK” will be displayed.

The validation result for the
property

This can be one of the following icons:
​

Green tick The property is valid

Red X The property is invalid

Dash This is an optional property for which a
value was not provided

Here is an example of a valid payload without issues:

https://docs.usehero.com/implementation/track-shopper-events/ecommerce-subfields
https://docs.usehero.com/implementation/track-shopper-events/ecommerce-subfields
https://docs.usehero.com/implementation/track-shopper-events/ecommerce-subfields

Here is an example of a payload with validation issues:

In this example, the location field has a value that is not supported as it doesn't begin with "http".

Copy or Download Event Payload

Copy Event Payload

Clicking the Copy to clipboard button will copy the event payload as a JSON to the clipboard such that it
can be pasted into an email/ticket/document.

Download Report

Clicking the Download button will save a CSV file with the event details and validation messages so that
the report can be easily shared via email/ticket/document.

Check Department Filtering configuration

Department Filtering can allow you to restrict which departments are shown to the shopper on the chat.
The filtering can be applied to single or more pages throughout your site. More information on this
configuration can be found .here

If no Department Filtering is applied on the page, the Inspector Tool will indicate this.

Should you have Departments filtered on a particular page the Inspector Tool will display the configuration
and constraints. Click on the department to see the constraint details.

https://docs.virtual-shopping.klarna.com/extend-hero/department-filtering

Any errors that are detected will be described. Should you require further support with any
errors please reach out to your Customer Success Manager.

Other Information

There is additional information that Inspector Tool can show you if these are set up. This may be useful
when completing the testing of Virtual Shopping, or indeed to check the setup at any time.

Need Selectors

Need Selectors are prompted to the shopper in the on-site chat to guide them through the correct chat
journey. Inspector Tool will display the Need Selectors configured for your account in the order shown to
the shopper.

Currently, the Need Selectors cannot be managed in the Dashboard. To request any changes, please
contact your Customer Success Manager.

Customer Service

Should the Customer Service link be enabled, the full URL can be seen. The link is also clickable to test if
the correct URL has been set in the dashboard.

If the link does require updating this can easily be done in the dashboard, or alternatively please contact
your Customer Success Manager.

Test the Virtual Shopping tag

Once you've implemented the Virtual Shopping tag, it's possible that your On-site chat will not be
displaying as expected. To help you, we've put together this guidance where we'll show you:

​ How to run tests to diagnose issues

Simple actions you can take to solve them

Feel confident in your implementation ahead of launch

Has the Virtual Shopping tag been deployed correctly?

Is the correct App ID in the Virtual Shopping tag?

Diagnose other issues using the Display Request

​

Has the Virtual Shopping tag been deployed
correctly?

To check that you have implemented the Hero Javascript snippet correctly, simply open the Network tab in
the developer tools to confirm that the Javascript is loading as expected.

Steps to test

1. Click on inspect to display developer tools

2. Open the Network tab to display Network panel. Ensure you have checked the 'Disable cache' box

3. Type in the text box: usehero

4. Refresh / reload the page to display network activity. Network log should display requests such as:

loader.js and display?appId=XXXX

Results

Correct result:

​ loader.js status column should display 200 as the HTTP response code

Incorrect result:

​ loader.js request is not displayed in Network log

loader.js does not display 200 as the HTTP response code

Is the correct App ID in the Virtual Shopping
tag?

During set up it's possible to mix up which App ID goes where. The Staging App ID should be used for
your Staging environment and Production App ID should be used for your Production environment.

Ensure that the correct App ID is deployed to the right environment so that Virtual Shopping
knows the difference between Staging and Production. Find out more about App IDs . here

Steps to test ​

1. Right-click on website page and click on inspect to display developer tools

2. Open the Console tab 2, click on inspect to display developer tools and click 'Create Live Expression'
icon

3. Type in the text box: HeroWebPluginSettings then type Control + Enter or Command +
Enter (Mac) or click outside of the Live Expression text box to save the expression

Results

Correct result

​ The correct App ID implemented should be displayed.

Incorrect result

​ The incorrect App ID will be displayed i.e Production App ID displayed on Staging environment or
Staging App ID displayed on Production environment.

Diagnose other issues using the Display
Request

If your Virtual Shopping On-site chat is still not appearing on your website a useful tool to help you

diagnose the issue is the Display Request display?appId=XXX . The Display Request can be found
in your website developer tools. Find out how to use it here:

How to use the Display Request

Get started

Now you are familiar with the Display Request, you can use it to run tests and answer these questions:

Have you deployed Virtual Shopping to all planned pages on your website?

Are Dashboard configurations causing a display issue?

Is On-site chat being hidden by CSS?

How to use the Display Request

1. Right-click on website page, click on inspect to show developer tools and open the Network tab to show
Network panel. Ensure you have checked the 'Disable cache' box

2. Type in the text box usehero then reload page to show network activity. The Network log should show

requests such as: loader.js and display?appId=XXXX

3. Click on display?appId=XXXX then click on the Preview tab to show the Virtual Shopping
Messenger display response

Correct result

​ The Preview tab should show the current status of Virtual Shopping Messenger and why it is or is not
showing

Having trouble?

If you can't get the Display Request to appear in the Network tab, follow these steps:

Why is the Display Request not appearing?

​

Why is the Display Request not appearing?

If the Display Request display?appId=XXXX is not appearing in the Network tab, this may mean that,
although Virtual Shopping Messenger has been deployed to your web pages, the App ID has not been
added to the Virtual Shopping tag.

Ensure the App ID has been added to the Virtual Shopping tag when deploying the code across
your website. Find out more about App IDs . here

Steps to test

1. Right-click on website page, click on inspect to display developer tools and open the Console tab

2. Click 'Create Live Expression' and type in the text box: HeroWebPluginSettings

3. Type Control + Enter or Command + Enter (Mac) or click outside of the Live Expression text
box to save the expression. This will show the App ID if it has been implemented

4. Open the Network tab to display Network panel. Ensure you have checked the 'Disable cache' box

5. Type in the text box: usehero

6. Reload page to display network activity. Network log should display requests such as loader.js and

display?appId=XXXX

7. Click on the display?appId=XXXX

8. Click on the Preview tab to see how Virtual Shopping has responded

Results

Correct results

​ display?appId=XXXX is displaying in the Network tab

​ App ID is displayed in the Console tab

Incorrect results

​ Display Request display?appId=XXXX is not displaying in the Network tab

​ App ID not displaying in the Console tab

Have you deployed Virtual Shopping to all
planned pages on your website?

Sometimes, although the Virtual Shopping tag has been set up correctly, On-site chat isn't showing on all
pages as expected. If you have the Network tab open and can see the JavaScript snippet is loading on
one page but not on another, this may mean that you have not yet deployed the Virtual Shopping tag
to all areas of your site.

We recommend you add the JavaScript code snippet to every page of your website. This
is so chats can follow shoppers from page to page after an initial chat is started and sales are
tracked correctly.

You do not have to add the Virtual Shopping tag to sensitive pages in your checkout journey but
the tag does need to be deployed to the transaction confirmation / complete page to track sales.

Steps to test

1. Right-click on website page where the On-site chat is not displaying

2. Click on inspect to display developer tools

3. Open the Network tab to display Network panel

4. Type in the text box usehero

5. Reload page to display network activity. Network log should display requests such as loader.js and

display?appId=XXXX

Results

Correct result

​ loader.js is displaying in the Network log

 Status column should display 200 as the HTTP response code

Incorrect result

​ loader.js request is not displaying in the Network log

Status column does not display 200 as the HTTP response code

Are Dashboard configurations causing a display
issue?

Once you have correctly deployed Virtual Shopping to your website, you may find that On-site Chat is still
not displaying as a result of configurations set up for you in your Dashboard, such as Store Hours, Only
Available, Get Notified 24/7 and others.

To help you find out if a configuration is causing the issue, you can check Display Request responses.
Below we've put together common Display Request responses to help resolve issues quickly.

Common Display Request responses

Retailer-only available

A display response of retailer-onlyavailable simply means that your plugin configurations in

Dashboard, has been switched from On to Only available . Therefore, On-site Chat will only
display when a team member is online and available on the Store app. If store teams are offline or
busy then the Launcher Icon will not display.

Retailer-only available

Page rules

A display response of pagerules means that the On-site Chat is hidden on the current page because of
, also configurable in your Dashboard. If the page has been blacklisted, then

the plugin will only display on that page under the conditions of the follow rules.
blacklisting or whitelisting

Page rules

Retailer closed

A display response of retailerclosed means that On-site Chat is not displaying due to the store
currently being closed.

This will be based on the store hours that have been set in the dashboard. This response will only show
if On-site Chat visibility is set to show within Store Hours. Only Available and Get Notified
24/7 are disabled.

Retailer closed

Retailer-full

A display response of Retailerfull means that On-site Chat is currently not showing because you
have reached your limit of Get Notified lead chats in the queue.

This limit is typically set at 30 but you can easily change this in your dashboard. On-site chat should
display again once the number of chats has gone below the lead queue limit once store teams start
accepting the backlog of chats where customers have left a message.

​

Object not found - 4040 Error message

A display response of Object not found means that the On-site chat is not currently displaying on
your webpages because an incorrect App ID has been deployed in the JavaScript tag. To avoid this
error, ensure that the right App ID has been implemented correctly across your web pages.

Object not found - 4040 Error message

Is On-site chat being hidden by CSS?

If the Display Request for the On-site is 'true' but but it is still not displaying, this may be because the On-

site chat element hero-iframe-container has been hidden with CSS using the CSS property:

display:none.

Steps to test

1. Right-click to inspect page

2. Ensure you are viewing the Elements tab

3. Search and select the element div class: hero-launcher-avatar-container-active-
standard-animating

4. View the Styles tab on the Elements panel to view the CSS rules being applied to the On-site chat
element.

5. If in the styles tab you see the display:none this will be why On-site chat is not showing up on your
webpage.

Here, Virtual Shopping Messenger is not visible on the webpage because it being hidden with CSS.

​

Test Shopper Event tracking

Sometimes after setting up Shopper Events, they do not behave as expected. There are a number of
reasons why this may happen so to help discover issues and fix them, we've put together this section
where we'll walk you through:

​ How to test the set up of Shopper Event tracking

What you should expect to see on your Staging or Production environment

How to test events using the Store app and developer tools on your browser

How can I test-run the experience?

Is Shopper Event tracking deployed correctly?

Are Shopper Events firing correctly?

Troubleshooting

How can I test-run the experience?

The best way to check that your Shopper Event tracking is correctly setup is to test run the experience a
store team member would have when messaging with a shopper through the Store App.

Testing out the interaction itself will help you check that Shopper Events are tracking as expected and
surfacing insights to store teams. To do this, you'll need to create a Store App account and claim a chat to
try out the experience.

Before you test

To ensure you can create a Store App account, you will need to:

Store location has been added to your Dashboard.

At least one member of your admin or management team has access to manage teams in
the Dashboard so they can approve pending member accounts

To ensure you are configured for the test to go to your Dashboard, you will need to make
sure the following is true:

"Only Available" is off

Ensure "Get Notified 24/7" is on

How to run a test using the Store app

1. Download the Store app

Also available in Google Play for Android

2. Create an account using the seven-character invite code. This code - a Staging code and Production
code - will have been sent to you along with your unique Staging and Production App IDs

Enter your invite code to create your account

3. To register, you will first need to go through the onboarding process which includes creating a profile
and an introduction to Virtual Shopping.

4. Once you have completed all three onboarding steps, a member of your management or admin team
will need to approve the account in the Dashboard.

5. Once your account has been approved, you will then need to make yourself available on the Store app

by tapping on the Go Available button

6. Start a chat using the On-site Chat feature and accept the chat on the Store App.

Is Shopper Event tracking deployed correctly?

What success looks like

To help you ensure that Shopper Event tracking is correctly set-up, we've provided guidelines and
examples of successful implementations:

Product View

Purchase

Basket Add

Basket Remove

Category View

Search

​

Product View
Are Shopper Events deployed correctly?

Below is an example of what a set-up looks like when the 'Product View' Shopper Event has been added
correctly to the product detail pages of your website. Before you begin comparing your setup, make sure
that you have completed the following:

Before you begin

1. To ensure you have deployed this Shopper Event correctly make sure you have included
all the correct .fields

2. Follow the steps in the section to ensure that the correct
details are being passed in the event and captured on the Store App as expected.

'How can I test-run the experience'

What success looks like

1. With a chat in progress, the 'Product View' event is displayed on the Store App.

2. Here the 'Product View' event can be seen in the request payload

​

3. Here, the 'Product View' event can be seen in the Network log of the request payload.

​

Group IDs vs. Variant IDs‌

If your Product Feed includes both Group IDs and Variant IDs, then it is important to ensure that
you are providing the correct ID in the Shopper Event tracking to match the correct ID of the
product being tracked.

This will ensure that product variants are also captured on the app when a shopper views or
purchases a specific product variant.

For example:

If a shopper lands on a generic product page - assuming the shopper has not selected a
variant i.e size, colour, length - then the Group ID for that product should be passed as the
product ID for the Shopper Event.‌

If a shopper selects a variant of that product and the page reloads to display the variant
product, then the Variant ID should be passed as the product ID for the Shopper Event.

Purchase
Are Shopper Events deployed correctly?

Below is an example of what a set-up looks like when the 'Purchase' Shopper Event has been added
correctly to the order confirmation pages of your website”. Before you begin comparing your set-up, make
sure that you have completed the following:

Before you begin

1. To ensure you have deployed this Shopper Event correctly make sure you are using the
correct .fields

2. Follow the steps in the section to ensure that the correct
details are being passed in the event and captured on the Store App as expected.

'How can I test-run the experience'

What success looks like

1. Here, you can see the Purchase event in the request payload of the Network tab

2. On the right, you can see the Purchase event is displaying correctly in the Store app

​

Group IDs vs. Variant IDs‌

If your Product Feed includes both Group IDs and Variant IDs, then it is important to ensure that
you are providing the correct ID in the Shopper Event tracking to match the correct ID of the
product being tracked.

This will ensure that product variants are also captured on the app when a shopper views or
purchases a specific product variant.

For example:

If a shopper lands on a generic product page - assuming the shopper has not selected a
variant i.e size, colour, length - then the Group ID for that product should be passed as the
product ID for the Shopper Event.‌

If a shopper selects a variant of that product and the page reloads to display the variant
product, then the Variant ID should be passed as the product ID for the Shopper Event.

Basket Add
Are Shopper Events deployed correctly?

Below is an example of what a set-up looks like when the 'Basket Add' Shopper Event has been added
correctly to the product detail pages of your website. Before you begin comparing your set-up, make sure
that you have completed the following:

Before you begin

1. To ensure you have deployed this Shopper Event correctly make sure you are using the
correct .subfields

2. Follow the steps in the section to ensure that the correct
details are being passed in the event and captured on the Store App as expected.

'How can I test-run the experience'

What success looks like

1. With a chat in progress, the 'Basket Add' event is captured on the Store app

2. Here, the 'Basket Add' event can be seen in the request payload

3. On the right, the 'Basket Add' event can be seen in the Store app

​

Group IDs vs. Variant IDs‌

If your Product Feed includes both Group IDs and Variant IDs, then it is important to ensure that
you are providing the correct ID in the Shopper Event tracking to match the correct ID of the
product being tracked.

This will ensure that product variants are also captured on the app when a shopper views or
purchases a specific product variant.

For example:

If a shopper lands on a generic product page - assuming the shopper has not selected a
variant i.e size, colour, length - then the Group ID for that product should be passed as the
product ID for the Shopper Event.‌

If a shopper selects a variant of that product and the page reloads to display the variant
product, then the Variant ID should be passed as the product ID for the Shopper Event.

Basket Remove
Are Shopper Events deployed correctly?

Below is an example of what a set-up looks like when the 'Basket Remove' Shopper Event has been
added correctly to the product detail pages of your website. Before you begin comparing your set-up, make
sure that you have completed the following:

Before you begin

1. To ensure you have deployed this Shopper Event correctly make sure you are using the
correct .fields

2. Follow the steps in the section to ensure that the correct
details are being passed in the event and captured on the Store App as expected.

'How can I test-run the experience'

What success looks like

1. Here, you can see the 'Basket Remove' event in the request payload of the Network tab.

2. On the right, the 'Basket Remove' event is showing correctly on the Store app

​

Group IDs vs. Variant IDs‌

If your Product Feed includes both Group IDs and Variant IDs, then it is important to ensure that
you are providing the correct ID in the Shopper Event tracking to match the correct ID of the
product being tracked.

This will ensure that product variants are also captured on the app when a shopper views or
purchases a specific product variant.

For example:

If a shopper lands on a generic product page - assuming the shopper has not selected a
variant i.e size, colour, length - then the Group ID for that product should be passed as the
product ID for the Shopper Event.‌

If a shopper selects a variant of that product and the page reloads to display the variant
product, then the Variant ID should be passed as the product ID for the Shopper Event.

Category View
Are Shopper Events deployed correctly?

Below is an example of what a set-up looks like when the 'Category View' Shopper Event has been added
correctly to the product detail pages of your website. Before you begin comparing your set-up, make sure
that you have completed the following:

Before you begin

1. To ensure you have deployed this Shopper Event correctly make sure you are using the
correct .fields

2. Follow the steps in the section to ensure that the correct
details are being passed in the event and captured on the Store App as expected.

'How can I test-run the experience'

What success looks like

1. Here, you can see the 'Category View' event displayed in the request payload of the Network tab

2. On the right, you can see the 'Category View' event, showing correctly in the Store app

​

Search
Are Shopper Events deployed correctly?

Below is an example of what a set-up looks like when the 'Search' Shopper Event has been added
correctly to the product detail pages of your website. Before you begin comparing your set-up, make sure
that you have completed the following:

Before you begin

1. To ensure you have deployed this Shopper Event correctly make sure you are using the
correct ​fields.

2. Follow the steps in the section to ensure that the correct
details are being passed in the event and captured on the Store App as expected.

'How can I test-run the experience'

What success looks like

1. With a chat in progress, the 'Search' Shopper Event is displayed in the Store App.

2. Here, you can see the 'Search' event in the request payload of the Network tab

3. On the right, you can see the 'Search' Shopper Event is displaying correctly in the Store App.

Are Shopper Events firing correctly?

Once you have set up the Shopper Events on your pages, you will need to check the events are firing as
expected. To help you do this, we've put together the following test scenarios.

To check that events are firing as expected, you will need go to your Staging or Production environment,
start a Virtual Shopping chat and view the developer tools request payload.

Get ready to test

Before you begin, you need to complete the following 2 preliminary steps:

1. Javascript successfully loaded on page and Virtual Shopping On-site Chat is displaying as expected

2. Make yourself available on the Store App.

Steps to test

1. Start a Virtual Shopping chat.

2 Accept chat on the Store App.

3. Right-click on your website page and click on inspect to display developer tools.

4. Open the Network tab to display the Network panel. Ensure you have checked the 'Disable cache' box.

6. Type in the filter text box: tracking

7. On website carry out a shopper action that would trigger the Shopper Event i.e. View a Product page to
fire the 'Product view' event.

8. As an option to further filter the Network log, you can click on the XHR tab to only show the Shopper

Event tracking resource with a 200 HTTP response code

9. Click on the tracking request in the Network log that displays 200 as the HTTP response code. Click
on the Headers tab to display the request payload

11. Expand the request payload to view the Shopper Event

Results

Correct result

​ The Shopper Event should be displayed in the request payload

​ The Shopper Event should show on the Store App

Incorrect result

​ Shopper Event is not visible in the Network tab

The Shopper Event is not captured on the Store App

Troubleshooting
Shopper Event tracking

There are many potential reasons why your implemented Shopper Events may not be behaving as
expected. To help you solve the problem quickly, here are common challenges you may come across
when setting up Shopper Events with simple solutions.

We recommend you begin troubleshooting with before reviewing articles on
specific Shopper Events.

All Shopper Events

All Shopper Events

Product View

Purchase

Basket Add

Basket Remove

Category View

Search

​

​

​

​

All Shopper Events
Shopper Event Troubleshooting

Here are a series of common scenarios you may face when testing the set up of any Shopper Event.

We recommend starting any troubleshooting here before reviewing articles on specific Shopper
Events.

Shopper Event is deployed but does not show in the Network tab

If you have deployed the Tracking API but are not seeing the tracking request in the Network log, then this
means that the Shopper Event may not have been set up correctly or further steps are required to see the
tracking endpoint in the Network tab.

Reasons why this may be happening:

1. A Virtual Shopping chat has not been initiated
You will need to start an On-site Chat to see the tracking endpoint in the Network tab. To do this type and
send an On-site Chat message - as a shopper - and accept the incoming chat on the Store App.

2. Tracking API has not been deployed to the required pages

The tracking API needs to be deployed to the necessary pages for the Shopper Event to fire on these
pages:

Product view: all Product detail pages (PDPs)

Purchase: the checkout confirmation page

Basket add: Any page where the shopper could add an item to a basket

Basket remove: Any page where the shopper can remove an item from the basket

Category view: Any page with a category structure

Search: Any page where the shopper could search for an item

3. The event deployed does not follow the correct structure

Ensure that the Shopper Event tracking tag is deployed with all the required fields for the event - see
above for guidance for each event.

Shopper Event fires on Network tab but does not show on the Store app

Reasons why this may be happening:

Incorrect event type value passed into the event.

Sometimes it's a just small typo for example, ecommerce: detail instead of

ecommerce:detail . To ensure that the event type value is added correctly, check .here

​ Example of incorrect set up of 'type' field value:

​ Example correct setup of 'type' field value

Products object not passed as an array of objects

This would prevent the Shopper Event from showing as expected on the Store App.

Purchase subfields are passed as an array instead of an object

This would prevent the Purchase Shopper Event from showing as expected on the Store app.

Product ID or SKU value is missing within the product array

Subtotal , Order ID and currency fields are not provided in the Purchase
event causing the Purchase Event to not show on the Store app

The example below show the last Shopper Event captured on the Store app - a Basket Add event. The
Purchase Shopper Event failed to show on the app due to an error during set up of the Purchase event

(missing the subtotal , currency and ID subfields).

Shopper Event not showing as expected on the Store app

There can be instances, where the Shopper Event is displayed in the Network tab, but not captured as
expected on the app. If this is the case, then it would mean that the data being passed into the event is
incorrect, or does not meet the implementation requirements outlined .here

Read on for common tracking implementation issues specific to each Shopper Event:

Product View
Shopper Event Troubleshooting

Product price not displaying on the Product View Event card

This issue would occur as a result of the price value being passed as a string instead of a number. It is
important to ensure that this field value is provided as a number so that it shows as expected on the Store
App.

'Product not found' message shows on the Store app when a user taps on a
Product View Event card

If your Product Feed has not yet been indexed then the 'Product not found' message will display when you
tap on the Shopper Event card.

If your Product Feed has been indexed successfully - products are displaying in the product catalogue -
then you should be able to tap on the Shopper Event card to view the product detail page on the Store
app. If you are seeing the 'Product not found' message, this would mean that the product ID provided in
the event, does not match the product ID provided in the Product Feed.

For example, if the product ID / SKU provided in the feed is 1606771598 and the ID provided in the
event does not match this exact value, then this will result in the 'Product not found' error message.

Product image missing from the Product View Event card

This issue occurs if the Image URL provided for the Shopper Event is either missing from the product array
or is not provided as https or is not a valid URL. All three scenarios can result in the product image to not
display on the product card for the Shopper Event.

Location URL is missing / is not provided as https

Incorrect currency value provided in the currency field

This should be the actual currency of the product as seen on your web pages and Product Feed.

Purchase
Shopper Event Troubleshooting

Product Price missing from Purchase Event card and the purchase sale is
not captured on the home screen

This issue is as a result of the subtotal (of the purchase subfield) and price (of the subfield in product array)
provided as a string in the 'Purchase' Shopper Event. Both values should be sent through the event as a
number to successfully capture the sale on the Store App.

Incorrect subtotal value shown on the Store App home screen and
Dashboard

This can occur when the subtotal value passed in the 'Purchase' Shopper Event does not match the actual
cost of the product, excluding the shipping costs.

To accurately capture the sale attributed to the store team member, it is important to ensure that the
subtotal value does not include the shipping cost of the sale.

Incorrect subtotal value is provided in 'Purchase' Shopper Event.

Incorrect subtotal value - including shipping cost - is attributed to the Hero App home screen.

Dashboard shows incorrect subtotal value provided in the Purchase Shopper Event.

Product image missing from the Purchase Event card

This issue occurs if the Image URL provided for the Shopper Event is either missing from the product array
or is not provided as https or is not a valid URL. All three scenarios can result in the product image to not
display on the shopper event product card.

No image URL in the Purchase Shopper Event means no image in the Shopper Event card.

Product name missing from Purchase Event card

If the name subfield passed into the Shopper Event is empty, then this would result in no product name
displaying on the Shopper Event card.

Location URL is missing / is not provided as https

currency field has incorrect value

This should be the 3-letter ISO 4217 code for the currency of the transaction (e.g. GBP for pound sterling).

quantity , shippingCost , subtotal , tax and total value provided as
strings instead of as numbers

These values including price and basketQuantity values should be provided in the correct format
of a number.

Basket Add
Shopper Event Troubleshooting

'Product not found' message appearing on the Store App when a user taps on
a Basket Add Event card

Assuming that the Product Feed has been indexed and products are displaying in the product catalogue, if
this issue is present, then this would mean that the product ID (SKU or variant ID) provided in the Shopper
Event, does not match the product ID provided in the Product Feed for that specific product.

Here the product ID provided in the event does not match the ID / SKU in the Product Feed.

Product price value missing from Basket Add Event card

If the price value is missing from the Shopper event card, this would mean that the price value passed in
the 'Add to basket' Shopper Event has been provided as a string and not a number. It is important to
ensure that price, quantity and basketQuantity values are implemented as a number and not a string in the
Shopper Event.

Price on Basket Add Event card does not match the current price of the
product

This issue occurs when the price provided within the product array of the Shopper Event, does not match
the current price of the product. It is important to ensure that the product price within the event matches the
current price of the product provided on your website and also in your Product Feed.

Product image missing from Basket Add Event card

This issue displayed on the app would occur if the image field / the image URL value is missing within the
product array or if the URL provided is not https and / or is not a valid URL. All three scenarios would result
in the product image to not display as expected on the app for the shopper event card.

Here, the image URL is missing from the Shopper Event.

Location URL is missing / is not provided as https

Currency field or currency value is incorrect or missing within the product
array

basketQuantity incorrectly passed into the Basket Add Event

This value should match the current quantity of products in the shopping basket

Basket Remove
Shopper Event Troubleshooting

product name displays incorrectly on Basket Remove Event card

If an incorrect product name is displaying on the Shopper Event card, then this would mean that the name
provided in the Shopper Event does not match the actual name of the product. It is important to ensure that
the name value implemented in the event matches the actual name of the product.

Incorrect name provided in Shopper Event

'Product not found' message appears on the Store App when a user taps on a
Basket Remove Event card

Assuming that the product feed has been indexed and products are displaying in the product catalogue, if
this issue is present, then this would mean that the product ID (SKU or variant ID) provided in the
Shopper Event, does not match the product ID provided in the Product Feed for that specific product.

For example, the unique product ID / SKU provided in the feed for the below product Red Sports Tee

is 1606771604 and the ID provided in the event 1606771604-RED does not match this exact value,
then this will result in the 'Product not found' error message when attempting to view the product detail
page.

Product image is missing from Basket Remove Event card

This issue displayed on the app would occur if the image field / the image URL value is missing within the
product array or if the URL provided is not https and / or is not a valid URL. aAll three scenarios would
result in the product image to not display as expected on the app for the Shopper Event card.

Product Image not displaying on Store App due to image URL not being https.

Price on Basket Remove Event card does not match the current price of the
product‌

If the price displayed on the shopper event card does not match the actual / current price of the product
being tracked, then this would mean that the price provided within the product array of the Shopper Event,
does not match the current price of the product.

It is important to ensure that the product price within the event matches the current price of the product
provided on your website and also in your Product Feed.

Price value is missing from Basket Remove Event card

If the price value is missing from the Shopper Event card, this would mean that the price value
passed in the 'Basket remove' Shopper Event has been provided as a string and not a number.

It is important to ensure that price , quantity and basketQuantity values are implemented as a
number and not a string in the Shopper Event.

Location URL is missing / is not provided as https

currency field or currency value is missing within the product array

​

Incorrect basketQuantity passed into the Shopper Event

This value should match the current quantity of products in the shopping basket.

Here, the basketQuantity is incorrect as it does not match the current quantity in shopping basket.

​

Category View
Shopper Event Troubleshooting

Category View value not showing on the Store App despite event firing in the
request payload

If the 'Category View' value is missing on the 'Category View' Shopper Event card in the Store App, then
this would mean that the value field is missing or empty or the value has not been provided as a string for
the Shopper Event.

Please ensure that this field has been passed into the event and in the format of a string to ensure that it
displays as expected on the Store App.

Category view value not shown on Store App due to value field not provided in Shopper Event.

'Category view' card shows as empty because the value field is empty in the Shopper Event.

Location URL is missing / is not provided as https

​

Search
Shopper Event Troubleshooting

'Search' value not displaying on the Store App despite event firing in the
request payload

If the 'Search' value is missing on the 'Search' event card on the Store App, then this would mean that the
value field within the Shopper Event is missing or empty or the value has not been provided as a string.

Please ensure that this field has been passed into the event and in the format of a string to ensure that it
displays on the Store App.

Here the 'Search' card shows an empty value because the value field is empty in the event.

Wrong Shopper Event captured on the Store App

If the wrong Shopper Event is captured on the Store App this would mean that the Shopper Event code
has been implemented to the wrong pages of your website.

For example, if the 'Search' event is triggered when a customer clicks on a category this would mean that
the 'Search' Shopper Event code has been implemented to a page with a category structure and not for a
'Search' shopper action. This would cause the event to fire incorrectly for a different Shopper action.

Here you can see a Search event firing for a different shopper action.

Location URL is missing/is not provided as https

The location field should be passed into the Shopper Event with a valid URL and this URL should be

https .

​

​

Ready Stores

Recommended WiFi speeds

Ensure access to good WiFi in stores

To provide the best possible associate experience, we recommend retailers have access to good WiFi
coverage in their stores.

The demands on the connection when using Virtual Shopping will vary depending on the activity taking
place:

​ Light On-site chats, sharing product recommendations or sending invites

 Medium Sending images and then video

 Heavy Video streaming

Virtual Shopping will work on a ‘good’ 3G connection for both shoppers on your website and associates
using the Store app.

Here is a breakdown of what Virtual Shopping tests on and the expected experience:

Connection Download Upload Experience

Good 3G 1.5 Mb/s 750 kB/s Okay

Regular 4G/LTE 4.0 Mb/s 3.0 mB/s Better

WiFi 30 Mb/s 15.0 mB/s Best

To find out how many simultaneous video streaming calls your network can support, run a test
. here

https://fast.com/

Supported devices

The Store App supports iOS and Android devices

The Store App for associates is available on iOS from the or Android from the
.

Apple App Store Google
Play Store

You should ensure your chosen devices conform to the minimum requirements listed below.

System requirements

For the best performance, we recommend using the Store app on the most recent devices and operating
systems.

iOS

The Store app supports either iPhones or iPads.

Minimum device requirements: iPhone 7 / iPad 7th Generation

Minimum operating system: iOS 13 or above

The Store App will run on iPad, the app has a mobile-first design and so will only display in
portrait mode.

Please note the Store App does not support the use of iPods

https://play.google.com/store/apps/details?id=com.usehero.hero&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.usehero.hero&hl=en&gl=US

Android

For the best experience with Store App on Android, we recommend using latest model Android devices.

Minimum operating system: OS 11.0 or above

Centrally provisioned devices

If your devices are provisioned by a central program please ensure that:

​ The app is set to auto-update

Push Notifications are enabled

​ are whitelistedPorts and Domains

Ports and Domains

Ensure Virtual Shopping will function on your corporate WiFi

If you blacklist any ports or domains on your corporate WiFi then ports and domains listed here must be
whitelisted for Virtual Shopping to function correctly on your team's devices when they are connected to
this network.

Virtual Shopping Core Product

Action Where Why

Whitelist Domain
​

*.usehero.com
Key API to ensure functionali
across the application

Whitelist Domain
*.virtual-
shopping.klarna.com

Key API to ensure functionali
across the application
(Websockets)

Whitelist Domain

*.twilio.com
tsock.twilio.com

tsock.us1.twilio.com
tsock.ie1.twilio.com
media.us1.twilio.com

mcs.us1.twilio.com

Real time messaging and vid
support across the application

Whitelist Domain
*.mixpanel.com
mixpanel.com

Reporting and analytics

Whitelist Domain
hero-prod-assets.s3-
eu-west-
1.amazonaws.com

General Storage across the
application - required for core
functionality i.e. images, vide
avatars etc...

* Domains that also need to be whitelisted on https

Apple Push Notification Service

Action Where Why

Whitelist IP and Port

IP address block 17.0.0.0/8

on ports TCP 5223 and TCP
443

Push notifications across all i
devices

Google Cloud Messaging

Action Where Why

Whitelist Port
​
​

Ports:

5228

5229 5230

Push notifications across
Android Devices
* please note there is no fixed
address:

​

https://firebase.goo
e.com/docs/cloud-
messaging/concept-
options#messaging-
ports-and-your-
firewall

​ ​ ​

Live Video Streaming

For Live Video Streaming, please follow . Twillio's recommended whitelisting

We recommend the following but we would ask you to verify using to
ensure correct setup.

Twillio's testing link

To run the test, access the above link from a device currently connected to the store network from where
you are going to be using Virtual Shopping. For the most accurate results, your test device should have the
same configuration as the 'Go Live; store associate’s device.

Region ID Location Host Name Port and Protocol

gll
Global Low Latency
(default)

global.vss.twili
o.com

443 WSS

​
Additional Connectivity
requirement

sdkgw.us1.twilio
.com

(WSS/443)

​
Additional Connectivity
requirement

ecs.us1.twilio.
com

(HTTPS/443)

​

Product Feed indexing

If your product feed is protected with an IP address allow list, please add the following IP addresses to
allow our platform to fetch the feed:

https://firebase.google.com/docs/cloud-messaging/concept-options#messaging-ports-and-your-firewall
https://www.twilio.com/docs/video/ip-addresses
https://networktest.twilio.com/

IP address

54.228.73.53

54.78.118.192

99.81.185.60

54.171.103.32

App deletion requests
If you recieve an email notification that a team member has requested for their Store App account be
deleted, here is how to delete their access and reassign their contacts.

Store team members can request that their Store App account be deleted from the profile page on their
app.

Once they do, you will be notified and asked to complete the following actions:

1. Deactivate the anonymized account.

2. Reassign any contacts associated with the anonymized account as needed.

How to locate anonymized accounts

Visit "Manage team" in your Dashboard and look for:

Name: Anonymised (DATE)

Email Address: ​user.xxxxx@vs-anon.klarna.com

​

mailto:user.QfDfpm7POL@vs-anon.klarna.com

FAQs

What Tracking Technologies does Virtual
Shopping use?

Tracking Types

Virtual Shopping On-site Chat stores a series of cookies and local storage that help us to understand who
a user is, surface their chat history, maintain the correct state of interaction with the on-site chat, correctly
attribute any sales to the product expert who helped them and manage experiments.

We do not utilise third-party cookies for tracking. Klarna sets first party client-side cookies.

Here are the Virtual Shopping tracking technologies currently in use:

Session

This stores data related to the user session, to ensure we can create new conversations and load
conversation history within On-site Chat.

​ ​

name
hero-session-* (* is replaced by your
application ID)

contains User token and shopper’s first name (if entered)

expiry 1 year

type cookie

The Session cookie is not configurable and cannot be deactivated as it is essential for
providing core messaging functionality.

State

This stores data related to the user’s current state, to allow us to understand what current interactions the
user has had in the On-site Chat i.e. whether it is open or closed.

​ ​

name
hero-state-* (* is replaced by your applica
ID)

contains Current Messenger state

expiry 1 year

type local storage

The State cookie is not configurable and cannot be deactivated as it is essential for manage the
users state and ensure a smooth and consistent shopper experience.

Attribution

The attribution cookie is always set but only contains information when Employee ID is enabled as a step
in product expert registration. When a shopper is or has been connected to an associate, this cookie will
be populated with the Associate ID, so that they can be attributed accurately. The cookie is set when
moving to a new page.

​ ​

name hero-associate-data

contains Associate employee ID

expiry 1 year

type cookie

The Attribution cookie cannot be deactivated, but will only be populated where an employee ID
is held for the product expert

Shopper Event tracking

The Shopper Event tracking local storage is used to store shopper events before they are sent to the
server.

​ ​

name
hero-tracking:* (* is replaced by your
application ID)

contains Shopper Events

expiry Not Set

type local storage

Experiment tracking

The Experiment entry in local storage is used to store experiment and variant IDs when an A/B is running.

​ ​

name
hero-experiment:* (* is replaced by your
application ID)

contains
Experiment and variant ID when an A/B test is
running

expiry Not Set

type local storage

Multi-tab support

The Multi-tab support uses an entry in session storage to ensure cross-tab support for conversations and
video calls.

​ ​

name hero-tab-id

contains Generated tab ID

expiry Expires when the tab/browser is closed

type session storage

User ID (deprecated)

The User ID cookie stores the Virtual Shopping Shopper ID and is accessible by the website to support
integrating Virtual Shopping data into the retailer's own reporting.

​ ​

name hero-user-id

contains User ID

expiry 1 month

type cookie

The Virtual Shopping User ID cookie will soon be deprecated. If you are using this cookie
then please get in touch with help.virtualshopping@klarna.com to discuss migration plans.

Further questions

What are the recommended server configurations to support Virtual Shopping cookies?

Configure Your server, NGINX and/or Apache to accept headers of size 8Mb - 16Mb

What is the expected cookie size?

As soon as On-site Chat loads a 130 byte cookie is set. Once a shopper starts a chat a 636 byte cookie is
set. This is the largest expected size of the cookie.

How big is the Javascript file and when is it
loaded?
The On-site Chat JavaScript is designed to offer maximum functionality with minimum impact on your
overall site performance.

The Virtual Shopping On-site Chat JavaScript loads asynchronously for optimal performance, ensuring all
priority website content is loaded before the Virtual Shopping JavaScript starts to load. It also loads only
the parts that are needed depending on the user interaction. The following details what is loaded in each
scenario.

​

The Loader is a JavaScript file which handles the loading of the On-site Chat launcher button and
messenger. It's as small as possible whilst still allowing us to understand display rules, determine sales
attribution and understand the shopper journey to inform the product expert. On a page where Virtual
Shopping won't show to a shopper, such as a checkout page, this is all that loads.

Total load: 27 KB

​

On pages where the customer can interact with the On-site Chat, there are three exclusive scenarios
which determine the plugin size:

The Launcher and Launcher Bubble loads but the user does not interact with the plugin.

Total load: 275 KB

​

The Launcher is interacted with to open the Messenger.

Total load: 340 KB

​

The Launcher is interacted with to open the Messenger and the customer starts a conversation.

Total load: 445 KB

​

There are a number of other minor asynchronous loads beyond this, but these are used by a minimum
number of users for specific functions around map and country selector functionality. These are kept to a
minimum.

​

We are continually committed to reducing the file size where possible.

Which languages are supported?

The On-site Chat plugin and Store App are localized into the following languages:

English (US)

Chinese (simplified)

Chinese (traditional)

Danish

Dutch

Finnish

French

German

Italian

Japanese

Korean

Norwegian

Polish

Portuguese

Spanish

Swedish

The language shown will depend on the languages selected in the shopper's browser settings
for the Plugin or the product expert's mobile device for the App.

​

What happened to Hero?

Hero became in March 2022. Klarna Virtual Shopping

Do I need to update anything on my site?

No, everything will continue to work the same as it did before. There's no dependency on you to update
what it is deployed to your site.

What's changed with the Hero App?

The Hero app is now called the Store App. It's under the same listing and so you will continue to receive
app updates as normal. From an architectural or technical perspective nothing has changed, it's
fundamentally the same app; just with a new look and feel. The only change is that the app is now
published by Klarna instead of Hero.

What does this mean for how you handle data?

Nothing has changed. Data is collected, stored and processed in the same way.

https://www.klarna.com/us/business/marketing-solutions/virtual-shopping/

What happens when Virtual Shopping is
deactivated?

60 days after an instance of Virtual Shopping is officially deactivated, all PII data associated with the
deactivated instance will automatically be anonymised.

Within this 60 day time frame, we will provide our merchants with access to this data via a secure method
of collection.

Please note that it is not be possible to access this data after the 60 day period.

​

